hírun HYUNDAI INVERTER
 N300

RUN

N300

Powerful high torque performance has been accomplished using advanced sensorless vector control.
 Powerful operation is possible for two motors at the same time.
Auto-tuning to perform sensorless vector control can now be easily done both on-line and off-line.

Versatile functions encompass more applications. Field replacement of cooling fans and DC bus capacitors can be accomplished in a fraction of the time.

Powerful Operation

 High Performance
Easy Operation

Fasy Maintenance

Environmental Friendliness

Versatile Function

MODEL NAME INDICATION

Powerful Operation, Easy Maintenance
 Hyundai Inverter-hírun ■N300

CONTENTS

Features	4
Standard Specifications	8
Dimensions	10
Operation and Programming	14
Function List	16
Terminals	25
Protective Functions	27

Connecting Diagram 28
Connecting to PLC 29
Wiring and Options $\quad 30$
Torque Characteristics 36
Temperature Derating Characteristics 37
For Correct Operation $\quad 38$

1 Powerful Operation with Advanced Sensorless Vector Control

Powerful high torque performance has been accomplished using HHi's
advanced sensorless vector control.

High starting torque of 200% or greater at 0.5 Hz

Torque Characteristics

Rotational fluctuation at low speed has been drastically reduced to enhance process stability and precision.

- Inverter driving frequency : 3 Hz

Motor : HHI's 5.5 kW 4-pole

N300-055LF	J300-055LF5(Previous series)
Rotational Fluctuation	Rotational Fluctuation

J300-055LF5(Previous series)
 Rotational Fluctuation

Comparison of Rotational Fluctuation

High torque of 150\% at approximately 0 Hz

High torque of 150% at approximately 0 Hz is accomplished when N300
drives a smaller motor by one frame size.
Brake ON/OFF sequence can be easily integrated with this feature.

High torque multi-motor operation

Powerful operation is possible for two motors at the same time.
In the case of conventional sensorless vector control, only one motor can be controlled.
(Note : The two motors must be the same model and capacity)

On-line/off-line auto-tuning
Auto-tuning to perform sensorless vector control can now be easily done both on-line and off-line.
On-line auto-tuning makes it possible for the motor characteristics to be updated automatically under "real time" ambient conditions.

Versatile Functions Encompass More Applications

Input / output function

[Intelligent terminal system is applied to both input and output terminals.
Sink/source type logic selection is possible.

- In addition to the pulse output monitor, analog (current and voltage) output terminals-AM and AMI are added as standard. The example(right) shows how a follower inverter can directly receive the analog output of the master inverter as its frequency command.
- An auxiliary speed input or trim" can be made by an additional analog signal.

Third motor constants setting

Constants for up to three motors can be set. This function is useful for controlling (multiaxis)motors via changeover.

Fan ON/OFF selection

The cooling fan operates while the inverter is running, and stops when the inverter stops. This feature provides longer cooling fan life, and eliminates fan noise while the inverter is idle.

PID operation

Helps simplify the system and save initial cost no need for external PID controller.
Useful for such applications as droop control.

Deceleration and stop at power failure

N300 decelerates and stops the motor using regenerative energy from the motor even though the power is not supplied. Especially critical in some textile processes.

UP/DOWN function

Up/down function fine-tunes output frequency. Convenient for a test-run.

Frequency scaling conversion

Display the output frequency scaled by the conversion factor for line"/process speed.

3-Wire function

" Seal-in" start signal without an external device.

P PI control selection

Provides stable control for carrier or trolley (material handling)operations.

Easy Maintenance

Easy-removable cooling fan and DC bus capacitor

Field replacement of cooling fan(s) and DC bus capacitors can be accomplished in a fraction of the time.

Removable control circuit terminals
Eliminates control rewiring when replacing the N300.

4. Environmental Friendliness

EMI filter

- EMI filters to meet European EMC and low voltage directives are available options for system conformance.

Reduced noise from control power supply Noise terminal voltage of the control power supply has been improved by 20 dB , resulting in significant reductions of noise interference with sensors and other peripheral devices.

Main circuit noise terminal voltage

Control power supply noise terminal voltage (L common or CM1 common)

Digital operator

Standard digital operator (OPE-N3) is removable for remote control, and has easy-to-see 4-digit display and LEDs to indicate the unit being monitored.

Built-in RS485

RS485 is provided as standard for ASCII serial communication.

User selection of command functions ("Quick Menu")
Frequently used commands can be selected and stored for quick reference.

Programming software

Optional PC drive configuration software which runs on Windows ${ }^{\circledR}$ operating system.

Protection for Various Installation Environments

Standard enclosure protection for N300 is IP20 (NEMA1).

Global Performance

Network compatibility

N300 can communicate with DeviceNet, PROFIBUS, LONWORKS, and Modbus RTU as options.

200 V class

Model ($\mathrm{N} 300-\square \square \square \mathrm{LF}$)				055LF	075LF	110LF	150LF	185LF	220LF	300LF	370LF	450LF	550LF
Enclosure (*1)				IP20(NEMA1)									
Applicable motor (4 pole, kW) (*2)				5.5	7.5	11	15	18.5	22	30	37	45	55
Rated capacity(kVA)			200 V	8.3	11	15.9	22.1	26.3	32.9	41.9	50.2	63.0	76.2
			240 V	9.9	13.3	19.1	26.6	31.5	39.4	50.2	60.2	75.6	91.4
Rated output current(A) (*3)				3-phase, 200~240 V $\pm \pm 10 \%) 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$									
Rated input voltage(V)				3 -phase, 200~240 V(According to supply voltage)									
Rated output current(A)				24	32	46	64	76	95	121	145	182	220
Control method				Line to line sine wave PWM									
Output frequency range (*4)				$0.1 \sim 400 \mathrm{~Hz}$									
Frequency accuracy				Digital: $\pm 0.01 \%$ of maximum frequency, Analog: $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$									
Frequency resolution				Digital setting: 0.01 Hz , Analog setting(Maximum frequency)/ 4,000(0 terminal: $12 \mathrm{bit} 0 \sim 10 \mathrm{~V}$, 02 terminal: $12 \mathrm{bit}-10 \sim+10 \mathrm{~V}$)									
V/f characteristics				V / f free-setting($30 \sim 400 \mathrm{~Hz}$ of base frequency), Constant torque and reduced torque of V / f control, sensorless vector control									
Speed fluctuation				$\pm 0.5 \%$ (sensorless vector control)									
Overload capacity				150\%/60sec, 200\%/0.5sec									
Acceleration/deceleration time				0.01-3,600sec(Linear/curve, accel/decel, selection), Two-stage accel/decel									
Starting torque				200% at 0.5 Hz (Sensorless vector control), 150% at around 0 Hz (Sensorless vector control, with a motor one-size frame down)									
	Dynamic braking(Short-time) (*5)			Built-in BRD circuit External dynamic braking unit(option)									
	Minimum value of resistor(Ω)			17	17	17	-	-	-	-	-	-	-
	DC braking			Performs at start; under set frequency at deceleration, via an external input(braking force, time, and operating frequency)									
	Frequency setting		Operator	Set by \triangle key $/ \nabla$ key									
			External signal	DC 0~10 V, -10~+10 V(Input impedance $10 \leftrightarrow 2)$, 4~20mA(Input impedance 100 ${ }^{\text {) }}$									
			External port	Set by RS 485									
	Forward/ Reverse Start/stop		Operator	Run key/Stop key(Change FW/RV by function command)									
			External signal	FW RUN/STOP(NO contact), RV set by terminal assignment(NO/NC selection), 3-wire input possible									
			External port	Set by RS 485									
	Intelligent input terminals			Selection of 8 function from: RV(Reverse), CF1-CF4(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel./decel.), FRS(Free-run-stop), EXT(External trip), USP(Unattended start protection), CS(Change to/from commercial power supply), SFT(Software lock), AT(Analog input selection), SET3(Third motor constants setting), RS(Reset), STA(3-wire start), STP(s-wire stop), F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), CAS(Control gain setting), UP/DWN(Remote-controlled accel./decel.), UDC(Remote-controlled data clearing), OPE(Operator control), SF1SF7(Multispeed bit command 1-7), OLR(Overload limit change), TL(Torque limit change), TRQ1, TRQ2(Torque limit selection(1),(2)) PPI(P/PI selection), BOK(Brake verification), ORT(Orientation), LAC(LAD cancel), PCLR(Positioning deviation reset), STAT(90-degree phase difference permission), NO(NOT selected)									
	Thermistor input			One terminal(PTC characteristics)									
$\begin{aligned} & \frac{0}{\omega} \\ & \frac{0}{0} \\ & \frac{00}{0} \\ & \frac{訁}{7} \\ & \frac{7}{3} \\ & 0 \end{aligned}$	Intelligent output terminals			Five open collector terminals and one NO-NC combined contact. Selection from: Run(Run signal), FA1(Frequency arrival signal(at the set frequency)), FA2(Frequency arrival signal(at or above the set frequency)), OL(Overload advance notice signal), OD(Output deviation for PID control), AL(Alarm signal), FA3(Frequency arrival signal(only at the set frequency)), OTQ(Over-torque), IP(Instantaneous power failure signal), UV(Under-voltage signal), TRQ(In torque limit), RNT(Operation time over), ONT(Plug in time over), THM(Thermal alarm), BRK(Brake release), BER(Brake error), ZS(Zero speed), Frequency arrival signal (at or above the set frequency(2)), Frequency arrival signal(only at the set frequency(2)), OL2(Overload advance notice signal(2)), (Terminal $11 \sim 13$ or 11~14 are automatically configured as ACO~AC2 or ACO~AC3 when alarm code output is selected at C62.)									
	Intelligent monitor output terminals			Analog voltage, Analog current, Pulse line output									
Display monitor				Output frequency, Output current, Motor torque, Scaled value of output frequency, Trip history, //O terminal condition, Input power, Output voltage									
Other functions				V/f free-setting(up to 5 points), Frequency upper/lower limit, Frequency jump, Accel./decel.curve selection, Manual torque boost value and frequency adjustment, Analog meter tuning, Start frequency setting, Carrier frequency setting, Electronic thermal free-setting, External frequency output zero/span reference, External frequency input bia start/end, Analog input selection, Retry after trip, Restart after instantaneous power failure, Various signal outputs, Reduced voltage start, Overload restriction, Default value setting, Deceleration and stop after power failure, AVR function, Fuzzy accel./decel., Auto-tuning(on-line/off line), High-torque multioperation									
Carrier frequency range				$0.5 \sim 15 \mathrm{kHz}$									
Protective functions				Over current protection, Overload protection, Braking resistor overload protection, Over-voltage protection, EEPROM error, Under-voltage error, CT(current transformer)error, CPU error, External trip, USP error, Ground fault, Input overvoltage protection, Instantaneous power failure, Option 1 connection error, Option 2 connection error, Inverter thermal trip, Phase failure detection, IGBT error, Thermistor error									
Environmental conditions		Ambient operating/storage temperature $(* 6)$ /humidity		$-10 \sim 50^{\circ} \mathrm{C} /-20 \sim 65^{\circ} \mathrm{C} / 25 \sim 90 \% \mathrm{RH}$ (Non-condensing)									
		Vibration (*7)		$5.9 \mathrm{~mm} s^{\prime}(0.6 \mathrm{G}), 10 \sim 55 \mathrm{~Hz}$									
		Location		Less than 1,000m of altitude, Indoors(no corrosive gas nor dust)									
Color				Gray									
Options		Optio		Feedback PCB(Vector control with sensor), 4-digit BCD, 16-bit binary, DeviceNet PCB, Lonworks PCB									
		Others		EMI filters, Input/output reactors. DC reactors, Radio noise filters. Braking unit, Braking resistor, LCR filter									
Operator				OPE-N3(4-digit LED)/Option: NOP3(Remote operator)									
Weight(kg)				3.5	5	5	12	12	12	20	30	30	50

[^0]*4) To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed.
${ }^{*} 5$) Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large control torque is required.
*6) Storage temperature refers to the temperature in transportaion.
*7) Conforms to the test method specified in JIS C0911(1984).

400 V class

Model ($\mathrm{N} 300-\square \square \square \mathrm{HF}$)				055HF	075HF	110HF	150HF	185HF	220HF	300HF	370HF	450HF	550HF	750HF	900HF	1100HF	1320HF
Enclosure (*1)				IP20(NEMA1)										IP00			
Applicable motor (4 pole, kW) (*2)				5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132
Rated capacity(kVA)			400 V	8.3	11	15.9	22.1	26.3	33.2	40.1	51.9	62.3	76.2	103.2	121.9	150.3	180.1
			480 V	9.9	13.3	19.1	26.6	31.5	39.9	48.2	62.3	74.8	91.4	123.8	146.3	180.4	216.1
Rated output current(A) (*3)				3-phase, 380~480 V($\pm 10 \%) 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$													
Rated input voltage(V)				3-phase, 380~480 V(According to supply voltage)													
Rated output current(A)				12	16	23	32	38	48	58	75	90	110	149	176	217	260
Control method				Line to line sine wave PWM													
Output frequency range				$0.1 \sim 400 \mathrm{~Hz}$													
Frequency accuracy				Digital: $\pm 0.01 \%$ of maximum frequency, Analog: $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$													
Frequency resolution				Digital setting: 0.01 Hz , Analog setting(Maximum frequency)/4,000(0 terminal: $12 \mathrm{bit} 0 \sim 10 \mathrm{~V}$, 02 terminal: $12 \mathrm{bit}-10 \sim+10 \mathrm{~V}$)													
V/f characteristics				V / f free-setting(30~400 Hz of base frequency), Constant torque and reduced torque of V / f control sensorless vector control													
Speed fluctuation				$\pm 0.5 \%$ (Sensorless vector control)													
Overload capacity				150\%/60sec, 200\%/0.5sec										150\%/60sec, 180\%/0.5sec			
Acceleration/deceleration time				0.01~3,600sec(Linear/curve, accel./decel., selection), Two-stage accel./decel.													
Starting torque				200% at 0.5 Hz (Sensorless vector control), 150% at around 0 Hz (Sensorless vector control, with a motor one-size frame down)													
	Dynamic braking(Short-time) (*5)			Built-in BRD circuit			External dynamic braking unit(option)										
	Minimum value of resistor(Ω)			70	50	50	-	-	-	-	-	-	-	-	-	-	-
	DC braking			Performs at start; under set frequency at deceleration, or via an external input(braking force, time, and operating frequency)													
$\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{0}{00} \\ & .0 \\ & \stackrel{0}{7} \\ & \stackrel{\rightharpoonup}{I} \end{aligned}$	Frequency setting		Operator	Set by \triangle key/ ∇ key													
			External signal	DC 0~10 V, -10~+10 V(Input impedance 10 凡), 4~20mA(Input impedance 100)													
			External port	Set by RS 485													
	Forward/ Reverse Start/Stop		Operator	Run key/Stop key(Change FW/RV by function command)													
			External signal	FW RUN/STOP(NO contact), RV set by terminal assignment(NO/NC selection), 3-wire input possible													
			External port	Set by RS 485													
	Intelligent input terminals			Selection of 8 function from RV(Reverse), CF1-CF4(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel/decel), FRS(Free-run-stop), EXT(External trip), USP(Unattended start protection), CS(Change to/from commercial power supply), SFT(Software lock), AT(Analog input selection), SET3(Third motor constants setting), RS(Reset), STA(3-wire start), STP(s-wire stop), F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), CAS(control gain setting), UP/DWN(Remote-controlled accel./decel), UDC(Remote-controlled data clearing), OPE(Operator control), SF1SF7(Multispeed bit command 1-7), OLR(Overload limit change), TL(Torque limit change), TRQ1, TRQ2(Torque limit selection (1),(2)), PPI(P/PI selection), BOK(Brake verification), ORT(Orientation), LAC(LAD cancel), PCLR(Positioning deviation reset), STAT(90degree phase difference permission), NO(NOT selected)													
	Thermistor input			One terminal(PTC characteristics)													
	Intelligent output terminals			Five open collector terminals and one NO-NC combined contact. Selection from Run(Run signal), FA1(Frequency arrival signal(at the set frequency)), FA2(Frequency arrival signal(at or above the set frequency)), OL(Overload advance notice signal), OD(Output deviation for PID control), AL(Alarm signal), FA3(Frequency arrival signal(only at the set frequency)), OTQ(Over-torque), IP(Instantaneous power failure signal), UV(Under-voltage signal), TRQ(In torque limit), RNT(Operation time over), ONT(Plug in time over), THM(Thermal alarm), BRK(Brake release), BER(Brake error), ZS(Zero speed), FA4(Frequency arrival signal) (At or above the set frequency(2)), FA5(Frequency arrival signal) (Only at the set frequency(2)), OL2(Overload advance notice signal(2)), (Terminal 11~13 or 11~14 are automatically configured as ACO~AC2 or AC0~AC3 when alarm code output is selected at C62.)													
	Intelligent monitor output terminals			Analog voltage, Analog current, Pulse line output													
Display monitor				Output frequency, Output current, Motor torque, Scaled value of output frequency, Trip history, I/O terminal condition, Input power, Output voltage													
Other functions				V/f free-setting(up to 5 points), Frequency upper/lower limit, Frequency jump, Accel./decel.curve selection, Manual torque boost value and frequency adjustment, Analog meter tuning, Start frequency setting, Carrier frequency setting, Electronic thermal free-setting, External frequency output zero/span reference, External frequency input bia start/end, Analog input selection, Retry after trip, Restart after instantaneous power failure, Various signal outputs, Reduced voltage start, Overload restriction, Default value setting, Deceleration and stop after power failure, AVR function, Fuzzy accel./decel, Auto-tuning(on-line/off line), High-torque multioperation													
Carrier frequency range				$0.5 \sim 15 \mathrm{kHz}$													
Protective functions				Over current protection, Overload protection, Braking resistor overload protection, Over-voltage protection, EEPROM error, under-voltage error, CT(current transformer)error, CPU error, External trip, USP error, Ground fault, Input overvoltage protection, Instantaneous power failure, Option 1 connection error, Option 2 connection error, Inverter thermal trip, Phase failure detection, IGBT error, Thermistor error													
Environmental Conditions		Ambient operating/storage temperature(*6) /humidity		$-10 \sim 50^{\circ} \mathrm{C} /-20 \sim 65^{\circ} \mathrm{C} / 25 \sim 90 \% \mathrm{RH}$ (Non-condensing)													
		Vibration (*7)		$5.9 \mathrm{~mm} \mathrm{~s}^{2}(0.6 \mathrm{G}), 10 \sim 55 \mathrm{~Hz}$						$2.9 \mathrm{~ms} \mathrm{~s}^{\text {s }}$ (0.3G), $10 \sim 55 \mathrm{~Hz}$							
		Location		Less than 1,000m of altitude, Indoors(no corrosive gas nor dust)													
Color				Gray													
Options		Options		Feedback PCB(Vector control with sensor), 4-digit BCD, 16-bit binary, DeviceNet PCB, Lonworks PCB													
		Others		EMI filters, Input/output reactors, DC reactors, Radio noise filters, Braking unit, Braking resistor, LCR filter													
Operator				OPE-N3(4-digit LED)/Option: NOP3(Remote operator)													
Weight(kg)				3.5	5	5	12	12	12	20	30	30	30	60	60	80	80

*1) The protection method conforms to JEM 1030 /NEMA(US)
*2) The applicable motor refers to HHI standard 3-phase motor(4 pole). To use other motors, be sure to prevent the rated motor current $(50 \mathrm{~Hz})$ from exceeding the rated output current of the inverter
*3) The output voltage decreases as the main power supply voltage decreases except for the use of AVR function .
*4) To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed
*5) Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large control torque is required.
*6) Storage temperature refers to the temperature in transportaion.
*7) Conforms to the test method specified in JIS C0911(1984).

N300-055LF / 055HF

Unit: mm(inch)

N300-075~110LF / HF

Unit: mm(inch)

Unit: mm(inch)

N300-300LF / HF

2- $\phi 12(2-\phi 0.47)$

N300-550LF

N300-750HF, 900HF

2- $\phi 12(2-\phi 0.47)$

Unit: mm(inch)

N300-1100HF, 1320HF

2- $\phi 12(2-\phi 0.47)$

N300 Series can be easily operated with the digital operator (OPE-N3) provided as standard. The digital operator can also be detached and can be used for remotecontrol.

Digital Operator (OPE-N3) Specification

Setting the Maximum Output Frequency

■Remote Operator NOP3 (Option)

Dimensions

－Change mode during run by selection of b031（software lock selection）
－Do not forget to press＂STR＂key when you change the display．

Monitor Mode and Standard Setting Mode					$\begin{aligned} & -\bigcirc=\text { Allowed } \\ & \times x=\text { Not permitted } \end{aligned}$	
	Code	Name	Description	Default setting	Run－time setting	Run－time data edit
	d001	Output frequency monitor	0．00～99．99／100．0～400．0 Hz	－	－	－
	d002	Output current monitor	0．0～999．9	－	－	－
	d003	Motor rotational direction monitor	F（Forward）／O（Stop）／r（Reverse）	－	－	－
	d004	PID feedback monitor	0．00～99．99／100．0～999．9／1000．～9999．／1000～9999／「100～「999	－	－	－
	d005	Intelligent input terminal Condition monitor		－	－	－
	d006	Intelligent output terminal Condition monitor		－	－	－
	d007	Output frequency scaled value monitor	0．00～99．99／100．0～999．9／1000．～9999．／1000～3996	－	－	－
	d012	Torque monitor	－300～＋300\％	－	－	－
	d013	Output voltage monitor	$0.0 \sim 600.0 \mathrm{~V}$	－	－	－
	d014	Input electric power monitor	0．00～999．9 kW	－	－	－
	d016	Accumulated time monitor during run	0．～9999．／1000．～9999．／1000～9999／「100～「999 hr	－	－	－
	d017	Power on time monitor	0．～9999．／1000．～9999．／1000～9999／「100～「999 hr	－	－	－
	d080	Trip count monitor	0．～9999．／1000～6553（10，000～65，530）（times）	－	－	－
	$\begin{gathered} \mathrm{d} 081 \\ \sim \mathrm{~d} 086 \end{gathered}$	Trip monitor 1～6	Trip code，Frequency（Hz），Current（A），Voltage（V），Run time（hr） power on time（hr）	－	－	－
	d090	Warning monitor	Warning code	－	－	－
	F001	Output frequency setting	0.0 Hz ，Starting frequency to maximum frequency（2nd max，3rd max frequency）	0.00	\bigcirc	\bigcirc
	F002	Acceleration time（1）setting	0．01～99．99，100．0～999．9，1000．～3600．sec	30.00	\bigcirc	\bigcirc
	F202	Acceleration time（1）setting for second motor	0．01～99．99，100．0～999．9，1000．～3600．sec	30.00	\bigcirc	\bigcirc
	F302	Acceleration time（1）setting for third motor	0．01～99．99，100．0～999．9，1000．～3600．sec	30.00	\bigcirc	\bigcirc
	F003	Deceleration time（1）setting	0．01～99．99，100．0～999．9，1000．～3600．sec	30.00	\bigcirc	\bigcirc
	F203	Deceleration time（1）setting for second motor	0．01～99．99，100．0～999．9，1000．～3600．sec	30.00	\bigcirc	\bigcirc
	F303	Deceleration time（1）setting for third motor	0．01～99．99，100．0～999．9，1000．～3600．sec	30.00	\bigcirc	\bigcirc
	F004	Motor rotational direction setting	00（Forward）／01（Reverse）	00	\times	\times
	A－－	To expanded function A（Basic functions）				
	b－－	To expanded function b（Protective functions and fine tuning function）				
	C－－	To expanded function C（Terminal setting functions）				
	H－－－	To expanded function H （Motor constants setting functions）				
	P－－－	To expanded function P（Option setting functions）				
	U－－	To expanded function U（User＇s selection functions）				

Expanded Function A

	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
	A001	Frequency command	01(Terminals)/ 02(Operator)/ 03(RS485)/ 04(Option 1) / 05(Option 2)	02	\times	\times
	A002	Run command	01(Terminals)/ 02(Operator)/ 03(RS485)/ 04(Option 1)/ 05(Option 2)	02	\times	\times
	A003	Base frequency setting	30. -Maximum frequency(Hz)	60.	\times	\times
	A203	Base frequency setting for second motor	30. -Maximum frequency for second motor(Hz)	60.	\times	\times
	A303	Base frequency setting for third motor	30. -Maximum frequency for third motor(Hz)	60.	\times	\times
	A004	Maximum frequency setting	30.~400. Hz	60.	\times	\times
	A204	Maximum frequency setting for second motor	30.~400. Hz	60.	\times	\times
	A304	Maximum frequency setting for third motor	30.~400. Hz	60.	\times	\times
	A005	Analog input setting	00 (Selection between O and Ol at AT) / 01 (Selection between O and 02 at AT)	00	\times	\times
	A006	O2 selection	00(Independent)/ 01(Only positive)/ 02(Both positive and negative)	00	\times	\times
	A011	External frequency output zero reference	$0.00 \sim 400.0 \mathrm{~Hz}$	0.00	\times	\bigcirc
	A012	External frequency output span reference	$0.00 \sim 400.0 \mathrm{~Hz}$	0.00	\times	\bigcirc
	A013	External frequency input bias start	0~100\%	0.	\times	\bigcirc
	A014	External frequency input bias end	0~100\%	100.	\times	\bigcirc
	A015	External frequency offset enable	00 (External frequency output zero reference)/ $01(0 \mathrm{~Hz}$)	01	\times	\bigcirc
	A016	External frequency filter time constant	1-30(Sampling time=2msec)	8.	\times	\bigcirc
	A019	Multispeed operation setting selection	00(Binary: up to 16-stage speed at 4 terminals)/ 01(Bit: up to 8-stage speed at 7 terminals)	00	\times	\times
	A020	Multispeed frequency setting (0)	0.0, Starting frequency to maximum frequency(Hz)	0.00	\bigcirc	\bigcirc
	A220	Multispeed frequency setting(0) for second motor	0.0 , Starting frequency to maximum frequency for second motor(Hz)	0.00	\bigcirc	\bigcirc
	A320	Multispeed frequency setting(0) for third motor	0.0, Starting frequency to maximum frequency for third motor(Hz)	0.00	\bigcirc	\bigcirc
	A021~A035	Multispeed frequency setting (1~15)	0.0, Starting frequency to maximum frequency(Hz)	0.00	\bigcirc	\bigcirc
	A038	Jogging frequency setting	0.0 , Starting frequency to 9.99 Hz	1.00	\bigcirc	\bigcirc
	A039	Jog stop mode selection	00(Free-run stop/ disabled during operation)/ 01(Controlled deceleration/ disabled during operation)/ 02(DC braking to stop/ disabled during operation)/ 03(Free-run on jog stop/ enabled during operation)/ 04(Controlled deceleration /enabled during operation)/ 05(DC braking on jog stop/ enabled during operation)	00	\times	\bigcirc
	A041	Torque boost method selection	00(Manual torque boost)/ 01(Automatic torque boost)	00	\times	\times
	A241	Torque boost method selection for second motor	00(Manual torque boost)/ 01(Automatic torque boost)	00	\times	\times
	A042	Manual torque boost value	0.0~20.0\%	1.0	\bigcirc	\bigcirc
	A242	Manual torque boost value for second motor	0.0~20.0\%	1.0	\bigcirc	\bigcirc
	A342	Manual torque boost value for third motor	0.0~20.0\%	1.0	\bigcirc	\bigcirc
	A043	Manual torque boost frequency adjustment	0.0~50.0\%	5.0	\bigcirc	\bigcirc
	A243	Manual torque boost frequency adjustment for second motor	0.0~50.0\%	5.0	\bigcirc	\bigcirc
	A343	Manual torque boost frequency adjustment for third motor	0.0~50.0\%	5.0	\bigcirc	\bigcirc
	A044	V/f characteristic curve selection	00(VC)/ 01(VP 1.7 POWER)/ 02(V/f free-setting)/ 03(SLV)/ 04(SLV at around 0 Hz)/ 05(V2)	00	\times	\times
	A244	V/f characteristic curve selection for second motor	00(VC)/ 01(VP 1.7 POWER)/ 02(V/f free-setting)/ 03(SLV)/ 04(SLV at around 0 Hz)	00	\times	\times
	A344	V/f characteristic curve selection for third motor	00(VC)/ 01(VP 1.7 POWER)	00	\times	\times
	A045	Output voltage gain	20.~100.	100.	\bigcirc	\bigcirc
$\begin{aligned} & \infty \\ & \stackrel{0}{\bar{y}} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	A051	DC braking enable	00(Disabled)/ 01(Enabled)	00	\times	\bigcirc
	A052	DC braking frequency setting	$0.00 \sim 60.00 \mathrm{~Hz}$	0.50	\times	\bigcirc
	A053	DC braking wait time	0.0~5.0sec	0.0	\times	\bigcirc
	A054	DC braking force setting	0.0~100\%	0.	\times	\bigcirc
	A055	DC braking time setting	0.00~60.0sec	0.0	\times	\bigcirc
	A056	DC braking edge/ level selection	00(Edge)/ 01(Level)	01	\times	\bigcirc
	A057	DC braking force setting at the starting point	0.0~100\% < 0.0~80\%> ${ }^{1)}$	0.	\times	\bigcirc
	A058	DC braking time setting at the starting point	0.0~60.0sec	0.0	\times	\bigcirc
	A059	DC braking carrier frequency setting	$0.5 \sim 15 \mathrm{kHz}$ Derating $<0.5 \sim 10 \mathrm{kHz}>^{1)}$	5.0	\times	\times

Expanded Function A

$\square=$ Allowed
$-x=$ Not permitted

	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
	A061	Frequency upper limit setting	0.0, Starting frequency to maximum frequency(Hz)	0.00	\times	\bigcirc
	A261	Frequency upper limit setting for second motor	0.0 , Starting frequency to maximum frequency for second motor(Hz)	0.00	\times	\bigcirc
	A062	Frequency lower limit setting	0.0, Starting frequency to maximum frequency (Hz)	0.0	\times	\bigcirc
	A262	Frequency lower limit setting for second motor	0.0, Starting frequency to maximum frequency for second motor(Hz)	0.00	\times	\bigcirc
	A063	Jump frequency(1) setting	$0.00 \sim 99.99 / 100.0 \sim 400.0 \mathrm{~Hz}$	0.00	\times	\bigcirc
	A064	Jump frequency width(1) setting	$0.00 \sim 10.00 \mathrm{~Hz}$	0.50	\times	\bigcirc
	A065	Jump frequency(2) setting	$0.00 \sim 99.99 / 100.0 \sim 400.0 \mathrm{~Hz}$	0.00	\times	\bigcirc
	A066	Jump frequency width(2) setting	$0.00 \sim 10.00 \mathrm{~Hz}$	0.50	\times	\bigcirc
	A067	Jump frequency(3) setting	0.00~99.99/100.0~400.0 Hz	0.00	\times	\bigcirc
	A068	Jump frequency width(3) setting	$0.00 \sim 10.00 \mathrm{~Hz}$	0.50	\times	\bigcirc
	A069	Acceleration hold frequency setting	0.00~99.99/100.0~400.0 Hz	0.00	\times	\bigcirc
	A070	Acceleration stop time setting	0.00~60.0sec	0.0	\times	\bigcirc
$\overline{3}$ 는 0 0 0 0	A071	PID function enable	00(Disabled) / 01(Enabled)	00	\times	\bigcirc
	A072	PID proportional gain	0.2~5.0	1.0	\bigcirc	\bigcirc
	A073	PID integral gain	0.0~3600.0sec	1.0	\bigcirc	\bigcirc
	A074	PID differential gain	0.0~100.0sec	0.0	\bigcirc	\bigcirc
	A075	PID scale	0.01~99.99	1.0	\times	\bigcirc
	A076	PID feedback selection	00(Feedback at OI)/ 01(Feedback at 0)	00	\times	\bigcirc
$\stackrel{\sim}{\gtrless}$	A081	AVR function selection	00(Always on)/01(Always off)/ 02(Off during deceleration)	02	\times	\times
	A082	Motor voltage selection	200/215/ 220/230/240, 380/400/415/ 440/460/480 V	200/ 400	\times	\times
	A085	Operation mode selection	00(Normal operation)/ 01(Energy-saving operation)/ 02 (Fuzzy operation)	00	\times	\times
	A086	Optimal energy savings capture rate	$0.0 \sim 100.0 \mathrm{sec}$	50.0	\bigcirc	\bigcirc
	A092	Acceleration time(2)	0.01~99.99/100.0~999.9/1000~3600sec	15.00	\bigcirc	\bigcirc
	A292	Acceleration time(2) for second motor	0.01~99.99/ 100.0~999.9/1000~3600sec	15.00	\bigcirc	\bigcirc
	A392	Acceleration time(2) for third motor	0.01~99.99/ 100.0~999.9/1000~3600sec	15.00	\bigcirc	\bigcirc
	A093	Deceleration time(2)	0.01~99.99/100.0~999.9/1000~3600sec	15.00	\bigcirc	\bigcirc
	A293	Deceleration time(2) for second motor	0.01~99.99/100.0~999.9/1000~3600sec	15.00	\bigcirc	\bigcirc
	A393	Deceleration time(2) for third motor	0.01~99.99/100.0~999.9/1000~3600sec	15.00	\bigcirc	\bigcirc
	A094	Selection method to use second accel./decel.	00(2CH input from terminal)/ 01(Transition frequency)	00	\times	\times
	A294	Selection method to use second accel./decel. for second motor	$00(2 \mathrm{CH}$ input from terminal)/ 01(Transition frequency)	00	\times	\times
	A095	Accel.(1) to accel.(2) frequency transition point	0.00~99.99/100.0~400.0 Hz	0.00	\times	\times
	A295	Accel.(1) to accel.(2) frequency transition point for second motor	0.00~99.99/ 100.0~400.0 Hz	0.00	\times	\times
	A096	Decel.(1) to decel.(2) frequency transition point	$0.00 \sim 99.99 / 100.0 \sim 400.0 \mathrm{~Hz}$	0.00	\times	\times
	A296	Decel.(1) to decel.(2) frequency transition point for second motor	0.00~99.99/ 100.0~400.0 Hz	0.00	\times	\times
	A097	Acceleration curve selection	00(Linear)/ 01(S-curve)/ 02(U-shape)/ 03(Reserved U-shape)	00	\times	\times
	A098	Deceleration curve selection	00(Linear)/ 01(S-curve)/ 02(U-shape)/ 03(Reserved U-shape)	00	\times	\times
	A101	External frequency output zero reference at OI	0.00~99.99/100.0~400.0 Hz	0.00	\times	\bigcirc
	A102	External frequency output span reference at OI	0.00~99.99/100.0~400.0 Hz	0.00	\times	\bigcirc
	A103	External frequency input bias start at OI	0.~100.\%	20.	\times	\bigcirc
	A104	External frequency input bias end at OI	0.~100.\%	100.	\times	\bigcirc
	A105	External frequency offset enable	00 (External frequency output zero reference)/ $01(0 \mathrm{~Hz}$)	01	\times	\bigcirc
	A111	External frequency output zero reference at 02	-400.0~400.0 Hz	0.00	\times	\bigcirc
	A112	External frequency output span reference at 02	-400.0~400.0 Hz	0.00	\times	\bigcirc
	A113	External frequency input bias start at 02	-100.~100.\%	-100.	\times	\bigcirc
	A114	External frequency input bias end at O2	-100.~ 100.\%	100.	\times	\bigcirc
	A131	Acceleration curve constants setting	01(Minimum) ~10(Extreme)	02	\times	\bigcirc
	A132	Deceleration curve constants setting	01(Minimum) 10(Extreme)	02	\times	\bigcirc

	nde	Function b			$\left[\begin{array}{l} \bigcirc=\text { All } \\ \times \\ =\text { No } \end{array}\right.$	owed permitted
	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
	b001	Selection of restart mode	00(Alarm)/ 01(Restart at 0 Hz)/ 02(Resume operation after frequency matching)/ 03(Resume previous frequency after frequency matching, then decelerate to stop and display trip information)	00	\times	\bigcirc
	b002	Allowable instantaneous power failure time	$0.3 \sim 1.0 \mathrm{sec}$	1.0	\times	\bigcirc
	b003	Time delay enforced before motor restart	$0.3 \sim 100.0 \mathrm{sec}$	1.0	\times	\bigcirc
	b004	Instantaneous power failure/ under-voltage trip enable Number of restarts after instantaneous power failure and under-voltage trip	00 (Disabled)/ 01(Enabled)/ 02(Disabled during stop and deceleration by stop command)	00	\times	\bigcirc
	b005		00(16 times)/ 01(Infinite)	00	\times	\bigcirc
	b006	Phase failure detection enable restart	00(Disabled)/ 01(Enabled)	00	\times	\bigcirc
	b007	Frequency setting	0.00~99.99/100.00~400.0 Hz	0.00	\times	\bigcirc
	b012	Level of electronics thermal setting	0.2 X rated current $\sim 1.2 \mathrm{X}$ rated current	Rated current	\times	\bigcirc
	b212	Level of electronics thermal setting for second motor	0.2 X rated current $\sim 1.2 \mathrm{X}$ rated current	Rated current	\times	\bigcirc
	b312	Level of electronics thermal setting for third motor	0.2 X rated current $\sim 1.2 \mathrm{X}$ rated current 00(Reduced characteristic)/ 01(Constant torque characteristic)/ 02(V/f free-setting)	Rated current	\times	\bigcirc
	b013	Electronic thermal charateristics		00	\times	\bigcirc
	b213	Electronic thermal characteristics for second Motor	00(Reduced characteristic)/ 01(Constant torque characteristic)/ 02(V/f free-setting)	00	\times	\bigcirc
	b313	Electronic thermal characteristics for third motor	00(Reduced characteristic)/ 01(Constant torque characteristic)/ 02(V/f free-setting)	00	\times	\bigcirc
	b015	Free-setting electronic thermal frequency(1)	0. $\sim 400 . \mathrm{Hz}$	0	\times	\bigcirc
	b016	Free-setting electronic thermal current(1)	0.0~1000.0 A	0.0	\times	\bigcirc
	b017	Free-setting electronic thermal frequency(2)	0. $\sim 400 . \mathrm{Hz}$	0	\times	\bigcirc
	b018	Free-setting electronic thermal current(2)	0.0~1000.0 A	0.0	\times	\bigcirc
	b019	Free-setting electronic thermal frequency(3)	0. ~ 400. Hz	0	\times	\bigcirc
	b020	Free-setting electronic thermal current(3)	0.0~1000.0 A	0.0	\times	\bigcirc
	b021	Overload restriction operation mode	00(Disabled)/ 01(Enabled during accel./constant speed)/ 02(Enabled during constant speed)/ 03(Enabled on acceleration/constant speed(Speed increasing at regenerating mode) 0.5 X rated current $\sim 2.00 \mathrm{X}$ rated current $<\sim 1.80 \mathrm{X}$ rated current $>^{1)}$	01	\times	\bigcirc
	b022	Overload restriction setting		$\begin{gathered} \text { Rated } \\ \text { currentX1.5 } \end{gathered}$	\times	\bigcirc
	b023	Deceleration rate at overload restriction	$0.1 \sim 30.00 \mathrm{sec}$	1.00	\times	\bigcirc
	b024	Overload restriction operation mode(2)	00(Disabled)/ 01(Enabled during accel./ constant speed)/ 02(Enabled during constant speed)/ 03(Enabled on acceleration/ constant speed(Speed increasing at regenerating mode)	01	\times	\bigcirc
	b025	Overload restriction setting(2)	0.5 X rated current $\sim 2.00 \mathrm{X}$ rated current < ~1.80 X rated current >1)	$\begin{gathered} \text { Rated } \\ \text { currentX1.5 } \end{gathered}$	\times	\bigcirc
	b026	Deceleration rate at overload restriction(2)	$0.1 \sim 30.00 \mathrm{sec}$	1.00	\times	\bigcirc
능	b031	Software lock mode selection	00(All parameters except b031 are locked when SFT from terminal is on)/ 01(All parameters except b031 and output frequency F001 are locked when SFT from terminal is on)/ 02(All parameters except b031 are locked)/ 03(All parameters except b031 and output frequency F001 are locked)/ 10(Runtime data edit mode)	01	\times	\bigcirc
$\begin{aligned} & \stackrel{\Omega}{0} \\ & \stackrel{N}{0} \end{aligned}$	b034	Run time/ power on time level	0~6553(65,530hr) (Output to intelligent terminal)	0	\times	\bigcirc
	b035	Rotational direction restriction	00(Enabled for both directions)/ 01(Enabled for forward)/ 02(Enabled for reverse)	00	\times	\bigcirc
	b036	Reduced voltage soft start selection	00(Short)~06(Long)	06	\times	\bigcirc
	b037	Display selection	00(All)/ 01(Function group)/ 02(All including user's selection)	00	\times	\bigcirc
	b040	Torque limit selection	00(4-quadrant setting)/ 01(Terminal selection)/	00	\times	\bigcirc
			02(Analog 02 input)/ 03(Option(1))/ 04(Option(2))	00	\times	\bigcirc
	b041	Torque limit(1) (Forward-forcing in 4-quadrant mode)	0.~200.\%/ no (Torque limit disabled) $<0 . \sim 180 . \% /$ no (Torque limit disabled) $>^{1)}$	150.	×	\bigcirc
	b042	Torque limit(2) (Reverse-regenerating in 4-quadrant mode)	0.~200.\%/ no (Torque limit disabled) $<0 . \sim 180 . \% /$ no (Torque limit disabled) $>^{1)}$	150.	\times	\bigcirc
	b043	Torque limit(3) (Reverse-forcing in 4-quadrant mode)	0.~200.\%/ no (Torque limit disabled) $<0 . \sim 180 . \% /$ no (Torque limit disabled) $>{ }^{1)}$	150.	\times	\bigcirc
	b044	Torque limit(4) (Forward-regenerating in 4-quadrant mode)	0. $200 . \% /$ no (Torque limit disabled) $<0 . \sim 180 . \% /$ no (Torque limit disabled) $>^{1)}$	150.	\times	\bigcirc

※1) < > 75~132kW

	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
$\begin{aligned} & \frac{\omega}{0} \\ & \stackrel{5}{5} \end{aligned}$	b045	Torque LAD-STOP enable	00(Disabled)/ 01(Enabled)	00	\times	\bigcirc
	b046	Reverse protection enable	00(Disabled)/ 01(Enabled)	00	\times	\bigcirc
	b050	Deceleration and stop after power failure enable	00(Disabled)/ 01(Enabled)	00	\times	\times
	b051	Starting voltage setting for deceleration and stop after power failure	0.0~1000. V	0.0	\times	\times
	b052	OV-LADSTOP level setting for deceleration and stop after power failure	0.0~1000. V	0.0	\times	\times
	b053	Deceleration time setting for deceleration and stop after power failure	0.01~99.99/ 100.0~999.9/ 1000.~3600.sec	1.00	\times	\times
	b054	Starting range of deceleration setting for deceleration and stop after power failure	$0.00 \sim 10.00 \mathrm{~Hz}$	0.00	\times	\times
	b080	AM terminal analog meter tuning	0.~255.	180	\bigcirc	\bigcirc
	b081	FM terminal analog meter tuning	0.~255.	60	\bigcirc	\bigcirc
	b082	Start frequency setting	$0.10 \sim 9.99 \mathrm{~Hz}$	0.50	\times	\bigcirc
	b083	Carrier frequency setting	$0.5 \sim 15.0 \mathrm{kHz}$ (When derated) < $0.5 \sim 10 \mathrm{kHz}>{ }^{1}$	5.0	\times	\times
	b084	Initialization mode selection	00 (Trip history clear)/ 01(Parameter initialization)/ 02(Trip history clear and parameter initialization)	00	\times	\times
	b085	Country code for initialization	00(Japanese version)/ 01(European version)/ 02(North American	00	\times	\times
	b086	Frequency scaling conversion factor	0.1~99.9	1.0	\bigcirc	\bigcirc
	b087	Stop key enable	00(Enabled) / 01(Disabled)	00	\times	\bigcirc
	b088	Resume on free-run stop cancellation mode	00 (Restart at 0 Hz)/ 01 (Resume operation after frequency matching)	00	\times	\bigcirc
	b090	Dynamic braking usage ratio	0.0~100.0\%	0.0	\times	\bigcirc
	b091	Stop mode selection	00(Deceleration and stop)/ 01(Free-run stop)	00	\times	\times
	b092	Cooling fan control	00 (Fan is always ON)/ $01<$ Fan is ON during run, after power is ON, then for 5 minutes on stop is implied >1)	00	\times	\times
	b095	Dynamic braking control	00(Disabled)/ 01<Enabled during run $>^{\text {¹/ }}$ (02<Enabled ${ }^{\text {¹) }}$	00	\times	\bigcirc
	b096	Activation level of dynamic braking setting	330~380/ 660~760 V	360/720	\times	\bigcirc
	b098	PTC thermal protection control	00(Disabled)/ 01(PTC enabled)/ 02(NTC enabled)	00	\times	\bigcirc
	b099	PTC thermal protection level setting	0.~9999. Ω	3000.	\times	\bigcirc
	b100	Free-setting V/f frequency(1)	0. \sim Free V/f frequency 2 Hz	0.	\times	\times
	b101	Free-setting V/f voltage(1)	$0 . \sim 800.0 \mathrm{~V}$	0.0	\times	\times
	b102	Free-setting V/f frequency(2)	0. ~Free V/f frequency 3 Hz	0.	\times	\times
	b103	Free-setting V/f voltage(2)	$0 . \sim 800.0 \mathrm{~V}$	0.0	\times	\times
	b104	Free-setting V/f frequency(3)	0. \sim Free V/f frequency 4 Hz	0.	\times	\times
	b105	Free-setting V/f voltage(3)	0. $\sim 800.0 \mathrm{~V}$	0.0	\times	\times
	b106	Free-setting V/f frequency(4)	0. \sim Free V/f frequency 5 Hz	0.	\times	\times
	b107	Free-setting V/f voltage(4)	$0 . \sim 800.0 \mathrm{~V}$	0.0	\times	\times
	b108	Free-setting V/f frequency(5)	0. \sim Free V/f frequency 6 Hz	0.	\times	\times
	b109	Free-setting V/f voltage(5)	$0 . \sim 800.0 \mathrm{~V}$	0.0	\times	\times
	b110	Free-setting V/f frequency(6)	0. \sim Free V/f frequency 7 Hz	0.	\times	\times
	b111	Free-setting V/f voltage(6)	0. $\sim 800.0 \mathrm{~V}$	0.0	\times	\times
	b112	Free-setting V/f frequency(7)	0. $\sim 400 . \mathrm{Hz}$	0.	\times	\times
	b113	Free-setting V/f voltage(7)	0. $\sim 800.0 \mathrm{~V}$	0.0	\times	\times
	b120	Brake control enable	00(Disabled)/ 01(Enabled)	00	\times	\bigcirc
	b121	Wait time for brake release establishment	0.00~5.00sec	0.00	\times	\bigcirc
	b122	Wait time for acceleration	0.00~5.00sec	0.00	\times	\bigcirc
	b123	Wait time for stopping	0.00~5.00sec	0.00	\times	\bigcirc
	b124	Wait time for brake verification	0.00~5.00sec	0.00	\times	\bigcirc
	b125	Release frequency setting	0.00~99.99/ 100.0~400.0 Hz	0.00	\times	\bigcirc
	b126	Release current setting	$0.00 \times$ rated current to $2.00 \times$ rated current	Rated current	\times	\bigcirc

[^1]
Expanded Function C

$-\bigcirc=$ Allowed
$-x=$ Not permitted

	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
	C001	Terminal(1) function	01(RV:Reverse)/ 02(CF1: Multispeed(1))/ 03(CF1: Multispeed(2))/ 04(CF3:Multispeed(3))/ 05(CF4: Multispeed(4))/ 06(JG: Jogging)/ 07(DB: External DC braking)/ 08(SET: Second constants setting)/	18(RS)	\times	\bigcirc
	C002	Terminal(2) function		16(AT)	\times	\bigcirc
	C003	Terminal(3) function	power supply)/ 15(SFT: Software lock)/ 16(AT: Analog input selection)/ 17(SET3: Third constants setting)/ 18(RS: Reset)/ 20(STA: 3-wire start)/	06(JG)	\times	\bigcirc
	C004	Terminal(4) function	PID reset)/ 26(CAS: Control gain setting)/ 27(UP: Remote-controlled accel.)/	11(FRS)	\times	\bigcirc
	C005	Terminal(5) function	33(SF2: Multispeed bit command(2)/ 34(SF3: Multispeed bit command(3)/	09(2CH)	\times	\bigcirc
	C006	Terminal(6) function	35(SF4: Multispeed bit command(4)/ 36(SF5: Multispeed bit command(5)/ 37(SF6: Multispeed bit command(6)/ 38(SF7: Multispeed bit command(7)/ 39(OLR: Overload limit change)/ 40(TL: Torque limit enable)/ 41(TRQ1: Torque	03(CF2)	\times	\bigcirc
	C007	Terminal(7) function		02(CF1)	\times	\bigcirc
	C008	Terminal(8) function	44(BOK: Brake verification)/ 45(ORT: Orientation)/ 46(LAC: LAD cancel)/ 47(PCLR: Positioning deviation reset)/ 48(STAT: 90-degree phase difference permission) / no(NO: Not selected)	01(RV)	\times	\bigcirc
	C011	Terminal(1) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C012	Terminal(2) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C013	Terminal(3) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C014	Terminal(4) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C015	Terminal(5) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C016	Terminal(6) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C017	Terminal(7) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C018	Terminal(8) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C019	Terminal FW active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C021	Terminal(11) function	00(RUN: Run signal)/ 01(FA1: Frequency arrival signal(at the set frequency))/ 02(FA2: Frequency arrival signal (at or above the set frequency))/ 03(OL: Overload advance notice signal)/ 04(OD: Output deviation for PID control)/ 05(AL: Alarm signal)/ 06(FA3: Frequency arrival signal(only at the set frequency))/ 07(OTQ: Over torque)/ 08(IP: Instantaneous power failure signal)/ 09(UV: Under-voltage signal)/ 10(TRQ: In torque limit)/ 11(RNT: Operation time over)/ 12(ONT: Power-on time over)/ 13(THM: Thermal alarm)/ 19(BRK: Brake release)/ 20(BER: Brake error)/ 21(ZS: Zero speed)/ 22(DSE: Speed deviation maximum)/ 23(POK: Positioning completion)/ 24(FA4: Frequency arrival signal (at or above the set frequency)(2))/ 25(FA5: Frequency arrival signal(only at the set frequency)(2))/ 26(OL2: Overload advance notice signal(2)) (Terminal 11~13 or 11~14 are automatically configured as AC0~AC2 or AC0~AC3 when alarm code output is selected at C62)	01(FA1)	\times	\bigcirc
	C022	Terminal(12) function		00(RUN)	\times	\bigcirc
	C023	Terminal(13) function		03(OL)	\times	\bigcirc
	C024	Terminal(14) function		07(OTQ)	\times	\bigcirc
	C025	Terminal(15) function		08(IP)	\times	\bigcirc
	C026	Alarm relay terminal function		05(AL)	\times	\bigcirc
	C027	FM signal selection	00(Output frequency)/ 01(Output current)/ 02(Output torque)/ 03(Digital output frequency-only at C027)/ 04(Output voltage)/ 05(Power)/ 06(Thermal load ratio/ 07(LAD frequency)	00	\times	\bigcirc
	C028	AM signal selection		00	\times	\bigcirc
	C029	AMI signal selection		00	\times	\bigcirc
	C031	Terminal(11) active state	00(NO)/ 01(NC)	00	\times	
	C032	Terminal(12) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C033	Terminal(13) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C034	Terminal(14) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C035	Terminal(15) active state	00(NO)/ 01(NC)	00	\times	\bigcirc
	C036	Alarm relay terminal active state	00(NO)/ 01(NC)	01	\times	\bigcirc
	C040	Overload signal output mode	00(During accel./decel.)/ 01(At constant speed)	01	\times	\bigcirc
	C041	Overload level setting	0.00*rated current 2.00 *rated current	Rated current	\times	\bigcirc
	$\begin{aligned} & \mathrm{C} 042 \\ & \mathrm{C} 043 \\ & \mathrm{C} 044 \end{aligned}$	Arrival frequency setting for acceleration Arrival frequency setting for deceleration PID deviation level setting				
						$0.00 \sim 99.99 / 100.0 \sim 400.0 ~ H z ~$ 0.00 \times \bigcirc $0.00 \sim 99.99 / 100.0 \sim 400.0 ~ H z ~$ 0.00 \times \bigcirc $0.0 \sim 100.0 \%$ 3.0 \times \bigcirc

Function List

Expanded Function C			$\left[\begin{array}{l} \bigcirc=\text { Allowed } \\ \times=\text { Not permitted } \end{array}\right.$			
	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
	C045	Arrival frequency setting for acceleration(2)	0.00~99.99/100.0~400.0 Hz	0.00	\times	\bigcirc
	C046	Arrival frequency setting for deceleration(2)	0.00~99.99/100.0~400.0 Hz	0.00	\times	\bigcirc
	C055	Over-torque(Forward-forcing) level setting	0. $200 . \%$	100.	\times	\bigcirc
	C56	Over-torque(Reverse-regenerating) level setting	0. $200 . \%$	100.	\times	\bigcirc
	C57	Over-torque(Reverse-forcing) level setting	0.~200.\%	100.	\times	\bigcirc
	C58	Over-torque(Forward-regenerating) level setting	0. $200 . \%$	100.	\times	\bigcirc
	C061	Electronic thermal warning level	0.~100.\%	80	\times	\bigcirc
	C062	Alarm code input	00(Disabled)/ 01(3 bit)/ 02(4 bit)	00	\times	\bigcirc
	C063	Zero speed detection level	0.00~99.99/100.0 Hz	0.00	\times	\bigcirc
	C070	Data commanding method	02(Operator)/ 03(RS485)/ 04(Option 1)/ 05(Option 2)	02	\times	\times
	C071	Communication speed selection	02(TEST)/ 03(2400bps)/ 04(4800bps)/ 05(9600bps)/ 06(19200bps)	04	\times	\bigcirc
	C072	Address allocation	1. ~ 32.	1.	\times	\bigcirc
	C073	Communication bit length selection	7 (7 bit)/ 8(8 bit)	7	\times	\bigcirc
	C074	Communication parity selection	00(No parity)/ 01(Even)/ 02(Odd)	00	\times	\bigcirc
	C075	Communication stop bit selection	1(1 bit)/ 2(2 bit)	1	\times	\bigcirc
	C078	Communication wait time	0.~1000.ms	0.	\times	\bigcirc
	C081	Fine tuning for O terminal input	0.~9999./ 1000~6553	Factory set	\bigcirc	\bigcirc
	C082	Fine tuning for OI terminal input	0.~9999./ 1000~6553	Factory set	\bigcirc	\bigcirc
	C083	Fine tuning for O 2 terminal input	0.~9999./ 1000~6553	Factory set	\bigcirc	\bigcirc
	C085	Thermistor tuning	0.0~1000.	105.0	\bigcirc	\bigcirc
	C086	AM offset tuning	$0.0 \sim 10.0 \mathrm{~V}$	0.0	\bigcirc	\bigcirc
	C087	AMI meter tuning	0.0~255.	80	\bigcirc	\bigcirc
	C088	AMI offset tuning	0. $\sim 20.0 \mathrm{~mA}$	0.0	\bigcirc	\bigcirc
$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{N}{5} \end{aligned}$	C091	Debug mode enable	00(No Display)/ 01(Display)	00	\times	\bigcirc
	C101	UP/DOWN mode selection	00 (Clear previous frequency)/ 01(Keep previous frequency)	00	\times	\bigcirc
	C102	Reset mode selection	00(Cancel trip state when reset signal turns ON)/ 01(Cancel trip state when reset signal turns OFF)/ 02(Cancel trip state when reset signal turns ON(Enabled during trip state))	00	\times	\bigcirc
	C103	Restart frequency after reset	00 (Restart at 0 Hz)/ 01(Resume operation after frequency matching)	00	\times	\bigcirc
	C111	Overload level setting(2)	0.00*rated current ~ 2.00 *rated current	Rated current	\times	\bigcirc
	C121	Zero tuning at O terminal	0~9999/ 1000~6553	Factory set	\bigcirc	\bigcirc
	C122	Zero tuning at OI terminal	0~9999/ 1000~6553	Factory set	\bigcirc	\bigcirc
	C123	Zero tuning at O 2 terminal	0~9999/ 1000~6553	Factory set	\bigcirc	\bigcirc

	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
	H001	Auto-tuning selection	00(NOR: Disabled)/ 01(NOR: No rotation)/ 02(AUT: Rotation)	00	\times	\times
	H002	First motor constants selection	00(Hyundai standard motor)/ 01(Auto-data)/ 02(Auto-data(withon-line auto-tuning)	00	\times	\times
	H202	Second motor constants selection	00(Hyundai standard motor)/ 01(Auto-data)/ 02(Autodata(with on-line auto-tuning)	00	\times	\times
	H003	First motor capacity selection	$0.20 \sim 75.0$ (kW) < $0.2 \sim 160 \mathrm{~kW}>{ }^{1)}$	Factory Set	\times	\times
	H203	Second motor capacity selection	$0.20 \sim 75.0$ (kW) < $0.2 \sim 160 \mathrm{~kW}>^{1)}$	Factory Set	\times	\times
	H004	First motor poles selection	2/4/6/8	4	\times	\times
	H2O4	Second motor poles selection	2/4/6/8	4	\times	\times
	H005	Speed response setting for first motor	$0.001 \sim 9.999 / 10.00 \sim 65.53$	1.590	\bigcirc	\bigcirc
	H205	Speed response setting for second motor	$0.001 \sim 9.999 / 10.00 \sim 65.53$	1.590	\bigcirc	\bigcirc
	H006	Stabilization constant setting for first motor	0. ~ 255.	100.	\bigcirc	\bigcirc
	H206	Stabilization constant setting for second motor	0. ~ 255.	100.	\bigcirc	\bigcirc
	H306	Stabilization constant setting for third motor	0. ~ 255.	100.	\bigcirc	\bigcirc
	H020	R1 setting for first motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H220	R1 setting for second motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H021	R2 setting for first motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H221	R2 setting for second motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H022	L setting for first motor	0.00~9.99/100.0~655.3(mH)	According to capacity	\times	\times
	H222	L setting for second motor	0.00~9.99/100.0~655.3(mH)	According to capacity	\times	\times
	H023	lo setting for first motor	0.00~9.99/ 100.0~655.3(A)	According to capacity	\times	\times
	H223	Io setting for second motor	0.00~9.99/ 100.0~655.3(A)	According to capacity	\times	\times
	H024	J setting for first motor	0.001~9.999/10.00~99.99/100.0~9999.(kgm²)	According to capacity	\times	\times
	H224	J setting for second motor	0.001~9.999/10.00~99.99/100.0~9999.(kgm)	According to capacity	\times	\times
	H030	Auto R1 setting for first motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H230	Auto R1 setting for second motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H031	Auto R2 setting for first motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H231	Auto R2 setting for second motor	0.000~9.999/10.00~65.53(Ω)	According to capacity	\times	\times
	H032	Auto L setting for first motor	0.00~99.99/100.0~655.3(mH)	According to capacity	\times	\times
	H232	Auto L setting for second motor	0.00~99.99/100.0~655.3(mH)	According to capacity	\times	\times
	H033	Auto lo setting for first motor	0.00~99.99/ 100.0~655.3(A)	According to capacity	\times	\times
	H233	Auto lo setting for second motor	0.00~99.99/100.0~655.3(A)	According to capacity	\times	\times
	H034	Auto J setting for first motor	0.001~9.999/10.00~99.99/100.0~9999.(kg m	According to capacity	\times	\times
	H234	Auto J setting for second motor	0.001~9.999/10.00~99.99/100.0~9999.(kg m²)	According to capacity	\times	\times
	H050	Pl proportional gain setting for first motor	0.00~99.99/100.0~999.9/ 1000(\%)	100.0	\bigcirc	\bigcirc
	H250	Pl proportional gain setting for second motor	0.00~99.99/100.0~999.9/ 1000(\%)	100.0	\bigcirc	\bigcirc
	H051	PI integral gain setting for first motor	0.00~99.99/100.0~999.9/ 1000(\%)	100.0	\bigcirc	\bigcirc
	H251	PI integral gain setting for second motor	0.00~99.99/100.0~999.9/ 1000(\%)	100.0	\bigcirc	\bigcirc
	H052	P proportional gain setting for first motor	0.01~10.00	1.00	\bigcirc	\bigcirc
	H252	P proportional gain setting for second motor	0.01~10.00	1.00	\bigcirc	\bigcirc
	H060	Zero, LV limit setting for first motor	0. 100.	100.	\bigcirc	\bigcirc
	H260	Zero, LV limit setting for second motor	0. 100.	100.	\bigcirc	\bigcirc
	H070	Terminal selection PI proportional gain setting	0.00~99.99/100.0~999.9/1000.(\%)	100.0	\bigcirc	\bigcirc
	H071	Terminal selection PI integral gain setting	0.00~99.99/100.0~999.9/1000.(\%)	100.0	\bigcirc	\bigcirc
	H072	Terminal selection P proportional gain setting	0.00~10.00	1.00	\bigcirc	\bigcirc

Function List

Expanded Function P				$\left[\begin{array}{l} \bigcirc=\text { Allowed } \\ \times=\text { Not permitted } \end{array}\right.$		
	Code	Name	Description	Default setting	Run-time setting	Run-time data edit
$\begin{aligned} & \text { 듬 } \\ & \text { 응 } \end{aligned}$	P001	Operation mode selection at Option(1) error	00(Trip)/ 01(Continuous operation)	00	\times	\bigcirc
	P002	Operation mode selection at Option(2) error	00 (Trip)/ 01(Continuous operation)	00	\times	\bigcirc
	P010	Feedback option enable	00(Disabled)/ 01(Enabled)	00	\times	\times
	P011	Encoder pulse setting	128. ~9999./ 1000~6500(10000~65000) pulses	1024.	\times	\times
	P012	Control mode selection	00(ASR mode)/ 01(APR mode)	00	\times	\times
	P013	Pulse-line mode setting	00/01/02/ 03	00	\times	\times
	P014	Orientation stop position setting	0.~4095.	0.	\times	\bigcirc
	P015	Orientation speed setting	0.00~99.99/100.0~120.0 Hz	5.00	\times	\bigcirc
	P016	Orientation direction setting	00(Forward)/ 01(Reverse)	00	\times	\times
	P017	Orientation completion range setting	0.~9999./ 1000 pulses	5	\times	\bigcirc
	P018	Orientation completion delay time setting	0.00~9.99 sec	0.00	\times	\bigcirc
	P019	Electronic gear set position selection	00(Positioning feedback side)/ 01(Positioning command side)	00	\times	\bigcirc
	P020	Electronic gear ratio numerator setting	0.~9999.	1.	\times	\bigcirc
	P021	Electronic gear ratio denominator setting	0.~9999.	1.	\times	\bigcirc
	P022	Feed-forward gain setting	0.00~99.99/100.0~655.3	0.00	\times	\bigcirc
	P023	Position loop gain setting	0.00~99.99/100.0	0.50	\times	\bigcirc
	P025	Secondary resistor error correction enable	00(Disabled)/ 01(Enabled)	00	\times	\bigcirc
	P026	Over-speed error detection level setting	0.00~99.99/100.0~150.0\%	135.0	\times	\bigcirc
	P027	Speed deviation error detection level setting	0.00~99.99/100.0~120.0 Hz	7.50	\times	\bigcirc
	P031	Accel./decel. time input selection	00(Operator)/ 01(Option(1))/ 02(Option(2))	00	\times	\times
	P032	Positioning command input selection	00(Operator)/ 01(Option(1))/ 02(Option(2))	00	\times	\bigcirc
	P044	DeviceNet running order of monitoring time setting	$0.00 \sim 99.99 \mathrm{sec}$	1.00	\times	\times
	P045	Setting in action of abnormal communication	00(Trip)/ 01(Controlled stop trip)/ 02(Ignore)/ 03(Coast to stop)/ 04(Controlled stop)	01	\times	\times
	P046	Out assemble instance number setting	20, 21, 100	21	\times	\times
	P047	Input assemble instance number setting	70, 71, 101	71	\times	\times
	P048	Detection of idle mode for motion setting	00(Trip)/ 01(Controlled stop trip)/ 02(Ignore)/ 03(Coast to stop)/ 04(Controlled stop)	01	\times	\times
	P049	Pole setting of rotation speed	0~38(Setting only an even number	0	\times	\times

Expanded Function U

Code	Name	Description	Default setting	Run-time setting
Run-time data edit				
U001~U012	User`s selection of 12 functions	no/ d001~P049 <~P032 >1)	no	\times

[^2]
Terminals

Main Circuit Terminals

Terminal Description

Terminal Symb	Terminal name
$\mathrm{R}(\mathrm{L} 1), \mathrm{S}(\mathrm{L} 2), \mathrm{T}(\mathrm{L} 3)$	Main power supply input terminals
$\mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2), \mathrm{W}(\mathrm{T} 3)$	Inverter output terminals
$\mathrm{PD}(+1), \mathrm{P}(+)$	DC reactor connection terminals
$\mathrm{P}(+), \mathrm{RB}(\mathrm{RB})$	External braking resistor connection terminals
$\mathrm{P}(+), \mathrm{N}(-)$	External braking unit connection terminals
$(1)(\mathrm{G})$	Ground connection terminal
$\mathrm{Ro}(\mathrm{Ro}), \mathrm{To}(\mathrm{To})$	Control power supply input terminals

■ Terminal Arrangement

[055LF, 055HF								[075~110LF/HF							(1) $\left.\begin{array}{\|c\|c}\text { Roo } \\ \text { (R0) }\end{array}\right) \begin{gathered}\text { To } \\ \text { (To) }\end{gathered}$		
		(L)	(12)	$\underset{\text { (13) }}{ }$	$\underset{\text { (T1) }}{\text { U }}$	$\underset{\text { (12) }}{V}$	$\underset{\text { (13) }}{\text { W }}$		(L1)	(12)	$\underset{(13)}{\top}$	$\underset{(T 1)}{u}$	$\underset{\text { (T2) }}{V}$	$\underset{\text { (73) }}{W}$			
Roi	To (T0)	PD	$\underset{\substack{\text { P } \\ \text { (})}}{ }$	$\begin{gathered} N \\ (H \end{gathered}$	$\begin{gathered} \text { RB } \\ (\mathrm{RBB} \end{gathered}$	$\underset{(a)}{(8)}$	$\begin{aligned} & (1) \\ & (G) \end{aligned}$		PD	$\underset{(+)}{\text { P }}$	$\underset{\sim}{N}$	$\underset{\text { RBB) }}{\text { R }}$	$\stackrel{\theta}{(\theta)}$	$\stackrel{(\theta)}{(\theta)}$			
(150~185LF, 300~370LF, 150~550HF														$\mathrm{R}_{\text {R0) }}$	${ }_{\substack{\text { To } \\ \text { (T) }}}$		
						(G)	(R	$\underset{\text { (2) }}{\text { S }}$	$\underset{\text { (13) }}{\top}$	PD	$\underset{\substack{\text { P } \\ \text { (}}}{ }$	$\underset{\sim}{N}$	$\underset{\text { (T) }}{\text { U }}$	$\underset{\text { (T2) }}{\text { V }}$	$\underset{\text { (13) }}{\text { W }}$	(E)	
[220LF, 450LF, 550LF, 750~1320HF														${ }_{\substack{\text { Ro } \\ \text { (R0) }}}$	${ }_{\text {To }}^{\substack{\text { To }}}$		
							(L1)	(12)	${ }_{\text {(L3) }}^{\top}$	PD	$\underset{(+)}{\text { P }}$	$\stackrel{N}{N}$	$\underset{\text { (T) }}{\text { U }}$	$\underset{\text { (T2) }}{\text { V }}$	$\underset{\text { (3) }}{\text { (}}$		
																$\stackrel{(9)}{(G)}$	

Screw Diameter and Terminal Width

Model	Screw diameter	Terminal width(mm)
055LF/ HF	M5	13
075LF/ HF	M5	17.5
110LF/ HF	M6	17.5
150LF, 185LF/ 150~370HF	M6	18
220~370LF/ 550HF	M8	23
450LF	M10	35
550LF, 1100HF~1320HF	M10	40
RoTo Terminal(All models)	M4	9
750HF~900HF	M10	29

Control Circuit Terminals

Control Terminal Arrangement

Terminal Description

Symbol				Name	Explanation of Terminals	Ratings
$\begin{aligned} & \frac{0}{\frac{0}{\pi}} \\ & \frac{0}{4} \end{aligned}$			L	Common terminal for analog power source	Common terminal for H, O, O2, OI, AM, and AMI. Do not ground	
	Frequency setting		H 0 02 01	Power source for frequency Frequency command terminal Frequency command extra terminal Frequency command terminal	Power supply for frequency command input Maximum frequency is attained at DC 10 V in $\mathrm{DC} 0 \sim 10 \mathrm{~V}$ range. Set the voltage at A014 to command maximum frequency below DC 10 V . O 2 signal is added to the frequency command of O or Ol in $\mathrm{DC} 0 \sim \pm 10 \mathrm{~V}$ range. By changing configuration, frequency command can be inputted also at 02 terminal. Maximum frequency is attained at DC 20 mA in DC 4~20 mA range. When the intelligent terminal configured as AT is on, Ol signal is enabled.	DC $10 \mathrm{~V}, 20 \mathrm{~mA}$ max. Input impedance: $10 \mathrm{k} \Omega$, Allowable input voltage range: DC -0.3~+12 V Input impedance:10 k Ω, Allowable input voltage range: DC 0~士 12 V Input impedance: $100 \mathrm{k} \Omega$, Allowable input voltage range: DC 0~24 mA
	Monitor output		AM	Analog output monitor(voltage)	Selection of one function from: output frequency, output current, torque, output voltage, input power, electronic thermal load ratio.	DC 0~10 V, 2 mA max.
			AMI	Analog output monitor(current)		DC 4~20 mA, 250Ω max.
			FM	Digital monitor (Voltage)	[DC0~10 V output (PWM output)] selection of one function from: output frequency, output current, torque, output voltage, input power, electronic thermal load ratio. [Digital pulse output (Pulse voltage DC 0/10 V)] Outputs the value of output frequency as digital pulse (duty 50%)	Digital output frequency range: 0~3.6 kHz, 1.2 mA max.
$\begin{aligned} & \overline{90} \\ & \stackrel{0}{600} \end{aligned}$	Power supply		P24	Power terminal for interface	Internal power supply for input terminals. In case of source type logic, common terminal for contact input terminals.	DC $24 \mathrm{~V}, 100 \mathrm{~mA}$ max.
			CM1	Common terminal for interface	Common terminal for P24, TH, and FM. In case of sink type logic, common terminal for contact input terminals. Do not ground.	-
		$\begin{aligned} & \text { Rum } \\ & \text { com } \\ & \text { mand } \end{aligned}$	FW	Forward command input	Forward command input	[Input ON condition] Voltage between each terminal and PLC: DC 18 V min. [Input OFF condition] -Voltage between each terminal and PLC: DC 3 V max. -Input impedance between each terminal and PLC: 4.7Ω -Allowable maximum voltage between each terminal and PLC: DC 27 V
			$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	Intelligent input terminals Common terminal for intelligent input terminals	Selection of 8 functions from: RV(Reverse), CF1-CF4(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel./decel.), FRS(Free-run stop), EXT(External trip), USP(Unattended start protection), CS(Change to/from commercial power supply), SFT(Software lock), AT(Analog input selection), RS(Reset), STA(3-wire start), STP(3-wire stop), F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), UP/DWN(Remote controlled accel. /decel.), UDC(Remote-controlled data clearing),SF1-SF7(Multispeed bit command 1~7), OLR(Overload limit change), and NO(Not selected) Select sink or source logic with the short-circuit bar on the control terminals. Sink logic: Short P24 to PLC / Source logic: Short CM1 to PLC. When applying external power source, remove the short-circuit bar and connect PLC terminal to the external device.	
			$\begin{gathered} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \text { CM2 } \end{gathered}$	Intelligent output terminals Common terminal for intelligent output terminals	Select 5 functions of inverter state, and configure them at terminal11~15. When the alarm code is selected at C062, terminal 11~13 or 11~14 are reserved for error codes of inverter trip. Both sink and source logic are always applicable between each terminal and CM1. Common terminal for intelligent output terminal 11~15.	-Decrease in voltage between each terminal and CM2: 4 V max. during ON -Allowable maximum voltage: DC 27 V Allowable maximum current: 50 mA
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{4} \end{aligned}$		$\bar{\circ}$ $\stackrel{n}{\bar{W}}$ in	TH	Thermistor input terminals	The inverter trips when the external thermistor detects abnormal temperature. Common terminal is CM1.[Recommended thermistor characteristics] Allowable rated power: 100 mW or over. Impedance in case of abnormal temperature: $3 \mathbb{\Omega} \Omega$ Note: Thermal protection level can be set between 0 and 9999Ω	Allowable input voltage range
$\frac{\overline{9}}{\stackrel{0}{00}}$			$\begin{aligned} & \text { ALO } \\ & \text { AL1 } \\ & \text { AL2 } \end{aligned}$	Alarm output terminals	In default setting, an alarm is activated when inverter output is turned off by a protective function.	Maximum capacity of relays AL1-ALO: AC 250 V, 2A(R load)/ 0.2A(I load)/ AL2-ALO:AC 250V, 1A(R load)/0.2A(l load) Minimum capacity of relays/ AL1-ALO: AC100 V,10mA DC5 $\mathrm{V}, 100 \mathrm{~mA}$

Protective Functions

Error Code

Name	Cause(s)		Display on digital operator	Display on remote operator(copy unit) ERR1 ****
Over-current protection	The inverter output was short-circuited, or the motor shaft is locked or has a heavy load. These conditions cause excessive current for the inverter, so the inverter output is turned off.	While at constant speed	E01	OC.Drive
		During deceleration	E02	OC.Decel
		During acceleration	[03	OC.Accel
		Others	E04	Over.C
Overload protection (*1)	When a motor overload is detected by the electronic thermal function, the inverter trips and turns off its output.		E05	Over.L
Braking resistor overload protection	When the regenerative braking resistor exceeds the usage time allowance or an over voltage caused by the stop of the BRD function is detected, the inverter trips and turns off its output.		E06	OL.BRD
Over-voltage protection	When the DC bus voltage exceeds a threshold, due to regenerative energy from the motor, the inverter trips and turns off its output.		507	Over.V
EEPROM error (*2)	When the built-in EEPROM memory has problems due to noise or excessive temperature, the inverter trips and turns off its output.		E08	EEPROM
Under-voltage error	A decrease of internal DC bus voltage below a threshold results in a control circuit fault. This condition can also generate excessive motor heat or cause low torque. The inverter trips and turns off its output.		E09	Under.V
CT error	If a strong source of electrical interference is close to the inverter or abnormal operations occur in the built-in CT, the inverter trips and turns off its output.		E 10	CT
CPU error	When a malfunction in the built-in CPU has occurred, the inverter trips and turns off its output.		E 11	CPU1
External trip	When the external equipment or unit has an error, the inverter receives the corresponding signal and cut off the output.		E 1 ?	EXTERNAL
USP error	An error occurs when power is cycled while the inverter is in RUN mode if the Unattended Start Protection (USP) is enabled. The inverter trips and does not go into RUN mode until the error is cleared.		E13	USP
Ground fault	The inverter is protected by the detection of ground faults between the inverter output and the motor during power-up tests. This feature protects the inverter only.		E 14	GND.FIt
Input over-voltage protection	When the input voltage is higher than the specified value, it is detected 60 seconds after power-up and the inverter trips and turns off its output.		E 15	OV.SRC
Instantaneous power failure	When power is cut for more than 15 ms , the inverter trips and turns off its output. If power failure continues, the error will be cleared. The inverter restarts if it is in RUN mode when power is cycled.		E 16	Inst.P-F
Inverter thermal trip	When the inverter internal temperature is higher than the specified value, the thermal sensor in the inverter module detects the higher temperature of the power devices and trips, turning off the inverter output.		E2	OH.FIN
Gate array error	Communication error has occurred in CPU and gate array.		E23	GA
Phase failure detection	One of three lines of 3-phase power supply is missing.		E2 4	PH.Fail
IGBT error	When an instantaneous over-current has occurred, the inverter trips and turns off its output to protect main circuit element.		E30	IGBT
Thermistor error	When the thermistor inside the motor detects temperature higher than the specified value, the inverter trips and turns off its output.		E35	TH
Braking error	The inverter turns off its output when it can not detect whether the braking is ON or OFF within waiting time set at b024 after it has released the brake. (When braking is enabled at b120)		E36	BRAKE
Out of operation due to under voltage	Due to insufficient voltage, the inverter has turned off its output and been trying to restart. If it fails to restart, it goes into the under-voltage error.		\cdots	UV.WAIT
Option 1 connection error	An error has been detected in an option or at connecting terminals for it.		E60~E69	OP1-0~OP1-9
Option 2 connection error			E70~ 579	OP2-0~OP2-9
Communication error	An error between operator and inverter has been detected.		\cdots	R-ERROR COMM <2>

※*1) After a trip occurs and 10 second pass, restart with reset operation. *2) When EEPROM error E08 occurs, confirm the setting data again.
<Status display>

Code	Description
0	Reset
1	Stop
2	Deceleration
3	Constant Speed
4	Acceleration

Code	Description
5	FO Stop
6	Starting
7	DB
8	Overload Restriction

< How to access the details about the present fault >

Terminal Name	FW, $1,2,3,4,5,6,7,8$, FM, TH	$\mathrm{H}, \mathrm{O}, 02, \mathrm{OI}, \mathrm{AM}, \mathrm{AMI}$	$11,12,13,14,15$
Common terminal	CM1	L	CM 2

Note) Common of each terminal is different.

Connection with Input Terminals

1. Using internal power source of the Inverter

(1) Sink type logic	(2) Source type logic
	bar between PLC and CM1 instead of P24 and PLC)

2. Using external power source

(1) Sink type logic	(2) Source type logic
	bar between P24 and PLC)

Note) Be sure to turn on the inverter after turning on the PLC and its external power source to prevent the parameters in the inverter from being modified.

Connection with Output Terminals

(1)Sink type logic	(2) Source type logic

Wiring and Options

Motor output(kW)		Model	Wiring			(MCCB)	M/C	
		$\begin{aligned} & \text { R,S,T,U,V, } \\ & \mathrm{W}, \mathrm{P}, \mathrm{~N}, \mathrm{PD} \end{aligned}$	P,RB	Signal lines				
$\begin{gathered} 200 \\ \mathrm{~V} \end{gathered}$	5.5		N300-055LF	5.5 mm	5.5 mm	$0.75 \mathrm{~mm}^{2}$ Shielded wire	HBH53(50A)	HMC20W
	7.5	N300-075LF	$8 \mathrm{~mm}^{2}$	5.5 mm	HBH103(60A)		HMC27W	
	11	N300-110LF	$14 \mathrm{~mm}^{2}$	5.5 mm	HBH103(75A)		HMC37W	
	15	N300-150LF	22 mm	-	HBH103(100A)		HMC50W	
	18.5	N300-185LF	30 mm	-	HBH103(100A)		HMC80W	
	22	N300-220LF	$38 \mathrm{~mm}^{2}$	-	HBH203(150A)		HMC90W	
	30	N300-300LF	$60 m m^{\prime}(22 m m \times 2)$	-	HBH203(200A)		HMC110w	
	37	N300-370LF	$100 m m^{\text {m }}$ ($38 \mathrm{~mm}^{\times} \times 2$)	-	HBH203(225A)		HMC130W	
	45	N300-450LF	$100 m^{\text {m }}$ ($38 \mathrm{~mm}^{\text {x }} \times 2$ 2)	-	HBH203(225A)		HMC180W	
	55	N300-550LF	$150 m m^{\text {m }}\left(60 \mathrm{~mm}^{\times} \times 2\right)$	-	HBH403(350A)		HMC210w	
$\stackrel{400}{\mathrm{~V}}$	5.5	N300-055HF	2 mm	2 mm	HBH53(30A)		HMC15W	
	7.5	N300-075HF	3.5 mm	3.5 mm	HBH53(30A)		HMC20W	
	11	N300-110HF	5.5 mm	5.5 mm	HBH53(50A)		HMC27W	
	15	N300-150HF	$8 \mathrm{~mm}^{2}$	-	HBH103(60A)		HMC37W	
	18.5	N300-185HF	14 mm	-	HBH103(60A)		HMC37W	
	22	N300-220HF	14 mm	-	HBH103(75A)		HMC50W	
	30	N300-300HF	22 mm	-	HBH103(100A)		HMC70W	
	37	N300-370HF	$38 \mathrm{~mm}^{2}$	-	HBH103(100A)		HMC80W	
	45	N300-450HF	$38 \mathrm{~mm}^{\prime}$	-	HBH203(150A)		HMC90W	
	55	N300-550HF	60 mm	-	HBH203(175A)		HMC110W	
	75	N300-750HF	$100 m^{(12}(38 \times 2)$	-	HBH203(225A)		HMC130W	
	90	N300-900HF	$100 m^{\text {m }}(38 \times 2)$	-	HBH2O3(225A)		HMC180W	
	110	N300-1100HF	$150 \mathrm{~mm}(60 \times 2)$	-	HBH403(350A)		HMC210w	
	132	N300-1320HF	$80 \mathrm{mmx} \times 2$	-	HBH403(350A)		HMC300w	

NOTE 1) Field wiring connection must be made by a UL listed and C-UL certified closed-loop terminal connector sized for the wire guage involved. Connector must be fixed using the crimp tool specified by the connector manufacturer.
NOTE 2) Be sure to use bigger wires for power lines if the distance exceeds 20 m .

© Input Output AC Reactor

Dimension

Input-side AC Reactor

Power harmonics AC Reactor for power factor improvement

ACL-L I-2.5
L:3-phase 200 V -H:3-phase 400 V Input

$\begin{array}{\|l} \hline \stackrel{0}{0} \\ \text { on } \\ \hline \end{array}$	Model	Dimension(mm)						(k)	Weight (kg)	See
		A	C	H	X	T	J			
$\begin{aligned} & \mathscr{0} \\ & \frac{\pi}{U} \\ & \text { D } \\ & \text { N} \\ & \text { N } \end{aligned}$	ACL- LL 15	110	80	110	40	52	6	4	185	
	ACL- Ll 2.5	130	90	130	50	67	6	4	3.0	
	ACL- LL 3.5	130	95	130	50	70	6	4	3.4	
	ACL- LL 5.5	130	100	130	50	72	6	4	3.9	
	ACL- LL 7.5	130	115	130	50	90	6	4	5.2	
	ACL- L1 11	180	120	190	60	80	6	5	8.6	
	ACL- LF 15	180	120	190	100	80	6	6.7	10.0	Fig. 2
	ACL- LI 22	220	130	200	90	90	6	8	110	
	ACL- LL 33	220	130	200	125	90	6	8	15.0	
	ACL- Ll 40	270	130	250	100	90	6	8	15.0	Fig. 2
	ACL- Ll 50	270	130	250	100	90	7	8.3	16.0	
	ACL- LL 60	270	135	250	100	95	7	8.3	16.5	
	ACL- LI 70	270	130	250	125	112	7	8.3	24.0	
	ACL- HF 5.5	130	90	130	50	75	6	4	3.9	
	ACL- H- 7.5	130	105	130	50	90	6	4	5.1	
	ACL- H1-11	160	110	160	60	95	6	4	8.7	Fig. 1
	ACL- H1-15	180	100	190	100	80	6	4	10	
	ACL- H- 22	180	110	190	100	80	6	5	10	
	ACL- H1-33	180	140	190	100	100	6	5	12	Fig. 1
	ACL- HI- 40	270	120	210	100	100	7	6.7	14	Fig. 2
	ACL- HF 50	270	120	250	100	90	7	8.3	15.5	
	ACL- H- 60	270	125	250	100	95	7	8.3	16	Fig.
	ACL- HL 70	270	130	250	125	112	7	8.3	23.5	Fig. 2
	ACL- H1	270	140	250	125	112	7	10.3	26.5	Fig. 2
	ACL-	320	150	300	125	125	7	10.3	31	Fig. 2
	ACL- H- 150	320	160	300	125	140	7	10.3	36	Fig. 2
	ACL- H1-180	320	170	300	125	140	7	13	38	

Output-side AC Reactor

AC Reactor for increased protection for motor winding.

ACL-L-2.5
L:3-phase 200 V -
$\mathrm{H}: 3$-phase 400 V
Connected motor capacity(kW) -ـ

$\begin{aligned} & \text { 刃0 } \\ & \frac{\pi}{0} \\ & \hline 9 \end{aligned}$	Model	Dimension(mm)						(®)	Weight (kg)	See
		A	C	H	X	T	J			
$\begin{aligned} & \mathscr{N} \\ & \frac{\pi}{0} \\ & > \\ & \text { N} \\ & \text { N } \end{aligned}$	ACL- L- 0.4	110	90	110	40	65	6	4	2.7	Fig. 1
	ACL- L- 0.75	130	105	130	50	80	6	4	4.2	Fig. 1
	ACL- L- 15	160	100	160	80	75	6	4	6.6	Fig. 1
	ACL- L- 2.2	180	110	190	90	90	6	4	115	Fig. 1
	ACL- L- 3.7	220	110	210	125	90	6	4	14.8	Fig. 1
	ACL- L- 5.5	220	110	220	125	90	6	5.3	15.0	Fig. 2
	ACL- L- 7.5	220	130	220	120	112	7	6.7	22.0	Fig. 2
	ACL- L- 11	220	130	220	125	112	7	6.7	24.0	Fig. 2
	ACL- L- 15	270	155	250	140	125	7	6.7	37.0	Fig. 2
	ACL- L- 18.5	270	155	250	140	135	7	8.3	40.5	Fig. 2
	ACL- L- 22	270	170	250	140	140	7	8.3	43.0	Fig. 2
	ACL- L- 30	270	180	250	160	150	10	8.3	60.6	Fig. 2
	ACL- L- 37	270	180	250	160	150	10	8.3	62.0	Fig. 2
	ACL- L- 45	270	180	250	160	160	10	8.3	73.0	Fig. 2
	ACL- L- 55	270	190	250	160	180	10	10.3	76.0	Fig. 2
$\begin{aligned} & \mathfrak{W} \\ & \frac{\pi}{0} \\ & > \\ & 0 \\ & 0 \end{aligned}$	ACL- H- 0.4	110	85	110	40	65	6	4	2.7	Fig. 1
	ACL- H- 0.75	130	100	130	50	80	6	4	4.2	Fig. 1
	ACL- H-15	150	105	160	80	75	6	4	6.6	Fig. 1
	ACL- H- 2.2	180	105	190	90	90	6	4	11	Fig. 1
	ACL- H- 3.7	180	110	190	125	90	6	4	14.8	Fig. 1
	ACL- H- 5.5	180	110	190	125	90	6	4	15.5	Fig. 1
	ACL- H- 7.5	180	130	190	125	112	7	4	22	Fig. 1
	ACL- H- 11	180	130	200	125	112	7	5.3	24	Fig. 2
	ACL- H- 15	270	150	250	140	125	7	6.7	37	Fig. 2
	ACL- H- 18.5	270	165	250	140	135	7	6.7	40	Fig. 2
	ACL- H- 22	270	175	250	140	140	7	6.7	43	Fig. 2
	ACL- H- 30	270	180	250	160	150	10	8.3	60	Fig. 2
	ACL- H- 37	270	180	250	160	150	10	8.3	62	Fig. 2
	ACL- H- 45	270	190	250	160	160	10	8.3	72	Fig. 2
	ACL- H- 55	270	200	250	160	180	10	8.3	75	Fig. 2
	ACL- H- 75	270	220	250	160	190	10	8.3	93	Fig. 2
	ACL- H- 90	320	240	330	160	200	10	10.3	117	Fig. 2
	ACL- H- 110	320	280	330	160	250	10	10.3	140	Fig. 2
	ACL- H-132	320	230	330	160	200	10	10.3	96	Fig. 2

■Noise Filter for Inverter

Input Side Noise Filter

Model	Rated current	Rated voltage	Dimension(mm)									Type
			A	B	C	D	E	H	G	K	T	
200 V												
AT3AK-2010	10A	250VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
ATЗAK-2015	15A	250VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
DT3AK-2020	20A	250VAC	135	145	175	80	100	65	M4	Ф5.2	M4	B
DT3AK-2030	30A	250VAC	130	145	175	80	100	65	M4	Ф5.2	M5	B
ETЗAK-2040	40A	250VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ET3AK-2050	50A	250VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ETЗAK-2060	60A	250VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
GT3AK-2080	80A	250VAC	220	235	275	120	*40	120	M8	Ф8.0	M6	B
GT3AK-2100	100A	250VAC	220	235	285	120	140	120	M8	Ф8.0	M8	B
GT3AK-2120	120A	250VAC	220	235	285	120	140	120	M8	Ф8.0	M8	B
FT3AK-2150	150A	250VAC	300	320	365	120	140	120	M8	Ф8.0	M8	B
FT3AK-2180	180A	250VAC	300	320	365	120	140	120	M8	Ф8.0	M10	B
HT3AK-2200	200A	250VAC	360	390	445	120	150	140	M8	8.0*12	M10	B
HTЗAK-2220	220A	250 VAC	360	390	445	120	150	140	M8	$8.0 * 12$	M10	B
HT3AK-2250	250A	250VAC	360	390	445	120	150	140	M8	$8.0 * 12$	M10	B
400 V												
AT3AK-4010	10A	450VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
ATЗAK-4015	15A	450VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
DT3AK-4020	20A	450VAC	130	145	175	80	100	65	M4	Ф5.2	M4	B
DT3AK-4030	30A	450 VAC	130	145	175	80	100	65	M4	Ф5.2	M5	B
ETЗAK-4040	40A	450 VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ETЗAK-4050	50A	450VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ETЗАK-4060	60A	450 VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
GT3AK-4080	80A	450 VAC	220	235	275	120	140	120	M8	Ф8.0	M6	B
GT3AK-4100	100A	450VAC	220	235	285	120	140	120	M8	Ф8.0	M8	B
GT3AK-4120	120A	450VAC	220	235	285	120	140	120	M8	Ф8.0	M8	B
FTЗAK-4150	150A	450VAC	300	320	365	120	140	120	M8	Ф8.0	M8	B
FTЗAK-4180	180A	450VAC	300	320	365	120	140	120	M8	Ф8.0	M10	B
HT3AK-4200	200A	450VAC	360	390	445	120	150	150	M8	8.0*12	M10	B
HT3AK-4220	220A	450VAC	360	390	445	120	150	150	M8	8.0*12	M10	B
HT3AK-4250	250A	450 VAC	360	390	445	120	150	150	M8	$8.0 * 12$	M10	B

Output Side Noise Filter

Model	Rated current	Rated voltage	Dimension(mm)									Type
			A	B	C	D	E	H	G	K	T	
200 V												
AT3CZ-2010	10A	250VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
AT3CZ-2015	15A	250VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
AT3CZ-2020	20A	250VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
AT3CZ-2030	30A	250VAC	90	55	135	100	110	55	M4	5.2*7.5	M5	A
DT3CZ-2040	40A	250VAC	130	145	175	80	100	65	M4	Ф5.2	M5	B
DT3CZ-2050	50A	250VAC	130	145	175	80	100	65	M4	Ф5.2	M5	B
ET3CZ-2060	60A	250VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ET3CZ-2080	80A	250VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ET3CZ-2100	100A	250VAC	190	195	245	110	130	85	M6	Ф5.2	M8	B
GT3CZ-2120	120A	250VAC	220	235	285	120	140	120	M8	Ф8.0	M8	B
FT3CZ-2150	150A	250VAC	300	320	365	120	140	120	M8	Ф8.0	M8	B
FT3CZ-2180	180A	250 VAC	300	320	385	120	140	120	M8	Ф8.0	M10	B
HT3CZ-2200	200A	250 VAC	360	390	445	120	150	140	M8	8.0*12	M10	B
HT3CZ-2220	220A	250VAC	360	390	445	120	150	140	M8	8.0*12	M10	B
HT3CZ-2250	250A	250VAC	360	390	445	120	150	140	M8	$8.0 * 12$	M10	B
400 V												
AT3CZ-4010	10A	450VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
AT3CZ-4015	15A	450 VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
AT3CZ-4020	20A	450 VAC	90	55	135	100	110	55	M4	5.2*7.5	M4	A
AT3CZ-4030	30A	450 VAC	90	55	135	100	110	55	M4	5.2*7.5	M5	A
DT3CZ-4040	40A	450VAC	130	145	175	80	100	65	M4	Ф5.2	M5	B
DT3CZ-4050	50A	450VAC	130	145	175	80	100	65	M4	Ф5.2	M5	B
ET3CZ-4060	60A	450VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ET3CZ-4080	80A	450VAC	180	195	235	110	130	85	M6	Ф5.2	M6	B
ET3CZ-4100	100A	450VAC	180	195	245	110	130	85	M6	Ф5.2	M8	B
GT3CZ-4120	120A	450VAC	220	235	285	120	140	120	M8	Ф8.0	M8	B
FT3CZ-4150	150A	450VAC	300	320	365	120	140	120	M8	Ф8.0	M8	B
FT3CZ-4180	180A	450VAC	300	320	365	120	140	120	M8	Ф8.0	M10	B
HT3CZ-4200	200A	450 VAC	360	390	445	120	150	140	M8	8.0*12	M10	B
HT3CZ-4220	220A	450VAC	360	390	445	120	150	140	M8	8.0*12	M10	B
HT3CZ-4250	250A	450VAC	360	390	445	120	150	140	M8	8.0*12	M10	B

Regenerative Braking Unit

■Specification

	Voltage	200 V Class										400 V Class										
Model Name		BRD-E			BRD-K3							BRD-EZ			BRD-VZ3							
		150L	220L		150L	220L		370L		550L		150	220 H		150H	220 H		370 H		550 H		750 H
Applicable Motor Capacity (kW)		15	19	22	15	18.5	22	30	37	45	55	15	18.5	22	15	19	22	30	37	45	55	75
DC Voltage (P-N)		DC 400V										DC 800V										
Operating Voltage (P-N)		$362 \pm 5 \mathrm{~V}$										$725 \pm 5 \mathrm{~V}$										
Average Braking Torque		150\%			130\%							150\%			130\%							
Allowable Braking Rate		10\%			20~30\%							10\%			20~30\%							
	Resistor Value (Ω)	6.7	4.6	4.6	8.7	6.0	6.0	3.5	3.5	2.4	2.4	27	18.4	18.4	30.0	20.0	20.0	12.0	12.0	8.0	8.0	6.0
	Heay-duty/Wattage (kW)	-	-	-	4.5	5.6	6.6	9.0	11.2	13.5	16.5	-	-	-	4.5	5.6	6.6	9.0	11.2	13.5	16.5	22.5
	Normal-duty/Wattage (kW)	2.5	3.0	4.0	2.5	3.0	4.0	5.0	6.0	7.0	8.5	2.5	3.0	4.0	2.5	3.0	4.0	5.0	6.0	7.0	8.5	11.0
Output Signal		Heatsink overheat trip signals																				
Protective Function		Output shut-down by Heatsink overheat, Short circuit, Overvoltage																				
External Dimension		A			B							A			B							
	Ambient Temperature	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$																				
	Humidity	90\% RH (Non-condensing)																				
	Location	Less than 1,000m of altitude, indoors (no corrosive gas nor dust)																				
	Cooling Method	Self-cooling																				

Dimension

Unit: mm

■Specification

Model	Rated capacity	Resistance	Continuous ON time rating	Power consumption	Overheat protection	See
RBO	200 W	180』 $\pm 5 \%$	10 sec max.	0.7 kW instantaneously 200 W rated	Incorporating a themal relay in the resistor, outputs "Open"()NC contact) signal at an excessive temperature Contact rating : 240 V AC, 3 A at resistive load or 0.2 A at inductive load. 36 V DC, 2 A at resistive load.	Fig. 1
RB1	300 W	$50 \Omega \pm 5 \%$	10 sec max.	2.6 kW instantaneously 300 W rated		Fig. 2
RB2	600 W	$35 \Omega \pm 5 \%$	10 sec max.	3.8 kW instantaneously 600 W rated		Fig. 3
RB3	1,200 W	$17 \Omega \pm 5 \%$	10 sec max.	7.7 kW instantaneously 1.2 kW rated		Fig. 4

(Fig.1) RB0

(Fig.3) RB2

$$
\begin{aligned}
& \text { Terminal block } \\
& \begin{array}{|l|l|l|l|}
\hline P & \mathrm{AL3} & \mathrm{AL4} & \mathrm{RB} \\
\hline
\end{array}
\end{aligned}
$$

(Fig.2) RB1

(Fig.4) RB3

High starting torque of 200% or greater at 0.5 Hz
Continuous operating torque of 100% with $1: 10$ speed range.

■Short Period Operating Torque

Continuous Operating Torque

Temperature Derating Characteristics

- The ambient temperature surrounding the inverter should not exceed the allowable temperature range $\left(-10\right.$ to $\left.50^{\circ} \mathrm{C}\right)$

※ Ambient temperature $50^{\circ} \mathrm{C}$, the condition of derating: Input voltage 240/460 V

■ Before use, be sure to read through the Instruction Manual to insure proper use of the inverter.
\square Note that the inverter requires electrical wiring; a trained specialist should carry out the wiring.
\square The inverter in this catalog is designed for general industrial applications. For special applications in fields such as aircraft, nuclear power, transport vehicles, clinics, and underwater equipment, please consult with us in advance.
■ For application in a facility where human life is involved or serious losses may occur, make sure to provide safety devices to avoid a serious accident.
\square The inverter is intended for use with a three-phase AC motor. For use with a load other than this, please consult with us.

■Application to Motors: Application to General-purpose Motors

| Operating frequency | The overspeed endurance of a general-purpose motor is 120% of the rated speed for 2 minutes (JIS C4,004). For operation at higher
 than 60Hz, it is required to examine the allowable torque of the motor, useful life of bearings, noise, vibration, etc. In this case, be
 sure to consult the motor manufacturer as the maximum allowable rpm differs depending on the motor capacity, etc. |
| :---: | :---: | :---: |
| Torque characteristics | The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial
 power (starting torque decreases in particular). Carefully check the load torque characteristic of a connected machine and the
 driving torque characteristic of the motor. |
| Motor loss and
 temperature increase | An inverter-driven general-purpose motor heats up quickly at lower speeds. Consequently, the continuous torque level (output) will
 decrease at lower motor speeds. Carefully check the torque characteristics vs speed range requirments. |
| Noise | When run by an inverter, a general-purpose motor generates noise slightly greater than with commercial power. |
| Vibration | When run by an inverter at variable speeds, the motor may generate vibration, especially because of (a) unbalance of the rotor
 including a connected machine, or (b) resonance caused by the natural vibration frequency of a mechanical system. Particularly,
 be careful of (b) when operating at variable speeds a machine previously fitted with a constant speed motor. Vibration can be
 minimized by (1) avoiding resonance points using the frequency jump function of the inverter, (2) using a tire-shaped coupling, or
 (3) placing a rubber shock absorber beneath the motor base. |
| Power transmission
 mechanism | Under continued, low-speed operation, oil lubrication can deteriorate in a power transmission mechanism with an oil type gear box
 (gear motor) or reducer. Check with the motor manufacturer for the permissible range of continuous speed. To operate at more
 than $60 ~ H z, ~ c o n f i r m ~ t h e ~ m a c h i n e ' s ~ a b i l i t y ~ t o ~ w i t h s t a n d ~ t h e ~ c e n t r i f u g a l ~ f o r c e ~ g e n e r a t e d . ~$ |

■Application to Motors: Application to Special Motors

Gear motor	The allowable rotation range of continuous drive varies depending on the lubrication method or motor manufacturer. (Particularly in case of oil lubrication, pay attention to the low frequency range.)
Brake-equipped motor	For use of a brake-equipped motor, be sure to connect the braking power supply from the primary side of the inverter.
Pole-change motor	There are different kinds of pole-change motors (constant output characteristic type, constant torque characteristic type, etc.), with different rated current values. In motor selection, check the maximum allowable current for each motor of a different pole count. At the time of pole change, be sure to stop the motor. Also see: Application to the 400 V class motor.
Submersible motor	The rated current of a submersible motor is significantly larger than that of the general-purpose motor. In inverter selection, be sure to check the rated current of the motor.
Explosion-proof motor	Inverter drive is not suitable for a safety-enhanced explosion-proof type motor. The inverter should be used in combination with a pressure-proof and explosion-proof type of motor.* Explosion-proof verification is not available for N300 series.
Synchronous (MS) motor High-speed(HFM) motor	In most cases, the synchronous (MS) motor and the high-speed (HFM) motor are designed and manufactured to meet the specifications suitable for a connected machine. As to proper inverter selection, consult the manufacturer.
Single-phase motor	A single-phase motor is not suitable for variable-speed operation by an inverter drive. Therefore, use a three-phase motor.

■Application to Motors: Application to the 400 V-class Motor

A system applying a voltage-type PWM inverter with IGBT may have surge voltage at the motor terminals resulting from the cable constants including the cable length and the cable laying method. Depending on the surge current magnification, the motor coil insulation may be degraded. In particular, when a 400 V class motor is used, a longer cable is used, and critical loss can occur, take the following countermeasures:(1) install the LCR filter between the inverter and the motor,(2) install the AC reactor between the inverter and the motor, or (3) enhance the insulation of the motor coil.

■Notes on Use: Drive

Run/ Stop
Emergency motor stop
High-frequency run

Run or stop of the inverter must be done with the keys on the operator panel or through the control circuit terminal. Do not operate by installing a electromagnetic contactor (Mg) in the main circuit.

When the protective function is operating or the power supply stops, the motor enters the free run stop state. When an emergency stop is required or when the motor should be kept stopped, use of a mechanical brake should be considered.

A max. 400 Hz can be selected on the N300 series. However, a two-pole motor can attain up to approx. $24,000 \mathrm{rpm}$, which is extremely dangerous. Therefore, carefully make selection and settings by checking the mechanical strength of the motor and connected machines. Consult the motor manufacturer when it is necessary to drive a standard(general-purpose) motor above 60 Hz . A full line of high-speed motors is available from Hyundai.

Notes on Use: Installation Location and Operating Environment

Avoid installation in areas of high temperature, excessive humidity, or where moisture can easily collect, as well as areas that are dusty, subject to corrosive gases, mist of liquid for grinding, or salt. Install the inverter away from direct sunlight in a well-ventilated room that is free of vibration. The inverter can be operated in the ambient temperature range from $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (Carrier frequency and output current must be reduced in the range of $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$)

■Notes on Use: Main Power Supply

$\left.\begin{array}{|c|}\hline \text { Installation of } \\ \text { an AC reactor } \\ \text { on the input side }\end{array}\right]$

In the following examples involving a general-purpose inverter, a large peak current flows on the main power supply side, and is able to destroy the converter module. Where such situations are foreseen or the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where influence of indirect lightning strike is possible, install a lightning conductor. (A) The unbalance factor of the power supply is 3% or higher. (Note) (B) The power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more). (C) Abrupt power supply changes are expected. Examples: (1) Several inverters are interconnected with a short bus. (2) A thyristor converter and an inverter are interconnected with a short bus. (3) An installed phase advance capacitor opens and closes. In cases (A), (B) and (C), it is recommended to install an AC reactor on the main power supply side.
Note: Example calculation with VRS=205 V, VST=201 V, VTR=200 VVRS: R-S line voltage, VST: S-T line voltage, VTR: T-R line voltage Max. line voltage (min.) - Mean line voltage
Unbalance factor of voltage $=\frac{\text { Mean line voltage }}{}$

$$
=\frac{V_{\mathrm{RS}-}\left(\mathrm{V}_{\mathrm{RS}}+\mathrm{V}_{\mathrm{ST}}+\mathrm{V}_{\mathrm{TR}}\right) / 3}{\left(\mathrm{~V}_{\mathrm{RS}}+\mathrm{V}_{\mathrm{SI}}+\mathrm{V}_{\mathrm{TR}}\right) / 3} \times 100=\frac{205-202}{202} \times 100=1.5(\%)
$$

An inverter run by a private power generator may overheat the generator or suffer from a deformed output voltage wave form of the generator. Generally, the generator capacity should be five times that of the inverter (kVA) in a PWM control system, or six times greater in a PAM control system.

Notes on Peripheral Equipment Selection

Wiring connections	
	Electromagnetic Contactor
Wetween inverter and motor	

> | (1) Be sure to connect main power wires with $\mathrm{R}(\mathrm{L1}), \mathrm{S}(\mathrm{L} 2)$, and $\mathrm{T}(\mathrm{L} 3)$ (input) terminals and motor wires to $\mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2)$), And W(T3) |
| :--- |
| terminals (output). (Incorrect connection will cause an immediate failure.) (2) Be sure to provide a grounding connection with the |
| ground terminal (』). |
| When an electromagnetic contactor is installed between the inverter and the motor, do not perform on-off switching during |
| running operation. |
| When used with standard applicable output motors (standard three-phase squirrel cage four pole motors), the N300 series does |
| not need a thermal relay for motor protection due to the internal electronic protective circuit. A thermal relay, however, should be |
| used: during continuous running outside a range of 30 Hz to 60 Hz for motors exceeding the range of electronic thermal |
| adjustment (rated current). When several motors are driven by the same inverter, install a thermal relay for each motor. The RC |
| value of the thermal relay should be more than 1.1 times the rated current of the motor. Where the wiring length is 10 m or more, |
| the thermal relay tends to turn off readily. In this case, provide an AC reactor on the output side or use a current sensor. |

Install a circuit breaker on the main power input side to protect inverter wiring and ensure personal safety. Choose an invertercompatible circuit breaker. The conventional type may malfunction due to harmonics from the inverter. For more information, consult the circuit breaker manufacturer.

The wiring distance between the inverter and the remote operator panel should be 20 meters or less. When this distance is exceeded, use CVD-E (current-voltage converter) or RCD-E (remote control device). Shielded cable should be used on the wiring. Beware of voltage drops on main circuit wires. (A large voltage drop reduces torque.)

If the earth leakage relay (or earth leakage breaker) is used, it should have a sensitivity level of 15 mA or more (per inverter).
Do not use a capacitor for power factor improvement between the inverter and the motor because the high-frequency components of the inverter output may overheat or damage the capacitor

High-frequency Noise and Leakage Current

(1) High-frequency components are included in the input/output of the inverter main circuit, and they may cause interference in a transmitter, radio, or sensor if used near the inverter. The interference can be minimized by attaching noise filters(option) in the inverter circuitry.
(2) The switching action of an inverter causes an increase in leakage current. Be sure to ground the inverter and the motor.

■Lifetime of Primary Parts

Because a DC bus capacitor deteriorates as it undergoes internal chemical reaction, it should normally be replaced every five years. Be aware, however, that its life expectancy is considerably shorter when the inverter is subjected to such adverse factors as high temperatures or heavy loads exceeding the rated current of the inverter.The approximate lifetime of the capacitor is as shown in the figure at the right when it is used 12 hours daily(according to the " Instructions for Periodic Inspection of General-Purpose Inverter" (JEMA)). Also, such moving parts as a cooling fan should be replaced. Maintenance inspection and parts replacement must be performed by only specified trained personnel.

[^0]: *1) The protection method conforms to JEM 1030 /NEMA(US)
 *2) The applicable motor refers to HHI standard 3-phase motor(4 pole). To use other motors, be sure to prevent the rated motor current(50 Hz) from exceeding the rated output current of the inverter.
 *3) The output voltage decreases as the main power supply voltage decreases except for the use of AVR function.

[^1]: ※1) < > 75~132kW

[^2]: ※1) < > 75~132kW

